
www.manaraa.com



www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3578389
Published by ProQuest LLC (2014).  Copyright in the Dissertation held by the Author.

UMI Number:  3578389



www.manaraa.com

RICE UNIVERSITY

Explicit or Symbolic Translation of Linear Temporal Logic
to Automata

by

Kristin Yvonne Rozier

A Thesis Submitted
in Partial Fulfillment of the
Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Moshe Y. Vardi, Chair
Karen Ostrum George Professor in
Computational Engineering

Lydia E. Kavraki
Noah Harding Professor of Computer
Science and Bioengineering

Peter J. Varman
Professor of Electrical and Computer
Engineering

Houston, Texas

April, 2012



www.manaraa.com

ABSTRACT

Explicit or Symbolic Translation of Linear Temporal Logic to Automata

by

Kristin Yvonne Rozier

Formal verification techniques are growing increasingly vital for the development of

safety-critical software and hardware in practice. Techniques such as requirements-based

design and model checking for system verification have been successfully used to verify

systems for air traffic control, airplane separation assurance, autopilots, CPU logic designs,

life-support, medical equipment, and other functions that ensure human safety.

Formal behavioral specifications written early in the system-design process and com-

municated across all design phases increase the efficiency, consistency, and quality of the

system under development. We argue that to prevent introducing design or verification er-

rors, it is crucial to test specifications for satisfiability. We advocate for the adaptation of

a new sanity check via satisfiability checking for property assurance. Our focus here is on

specifications expressed in Linear Temporal Logic (LTL). We demonstrate that LTL satisfi-

ability checking reduces to model checking and satisfiability checking for the specification,

its complement, and a conjunction of all properties should be performed as a first step to

LTL model checking.

We report on an experimental investigation of LTL satisfiability checking. We introduce

a large set of rigorous benchmarks to enable objective evaluation of LTL-to-automaton al-

gorithms in terms of scalability, performance, correctness, and size of the automata pro-

duced. For explicit model checking, we use the Spin model checker; we tested all LTL-
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to-explicit automaton translation tools that were publicly available when we conducted our

study. For symbolic model checking, we use CadenceSMV, NuSMV, and SAL-SMC for

both LTL-to-symbolic automaton translation and to perform the satisfiability check. Our

experiments result in two major findings. First, scalability, correctness, and other debili-

tating performance issues afflict most LTL translation tools. Second, for LTL satisfiability

checking, the symbolic approach is clearly superior to the explicit approach.

Ironically, the explicit approach to LTL-to-automata had been heavily studied while

only one algorithm existed for LTL-to-symbolic automata. Since 1994, there had been es-

sentially no new progress in encoding symbolic automata for BDD-based analysis. There-

fore, we introduce a set of 30 symbolic automata encodings. The set consists of novel com-

binations of existing constructs, such as different LTL formula normal forms, with a novel

transition-labeled symbolic automaton form, a new way to encode transitions, and new

BDD variable orders based on algorithms for tree decomposition of graphs. An extensive

set of experiments demonstrates that these encodings translate to significant, sometimes ex-

ponential, improvement over the current standard encoding for symbolic LTL satisfiability

checking.

Building upon these ideas, we return to the explicit automata domain and focus on

the most common type of specifications used in industrial practice: safety properties. We

show that we can exploit the inherent determinism of safety properties to create a set of

26 explicit automata encodings comprised of novel aspects including: state numbers ver-

sus state labels versus a state look-up table, finite versus infinite acceptance conditions,

forward-looking versus backward-looking transition encodings, assignment-based versus

BDD-based alphabet representation, state and transition minimization, edge abbreviation,

trap-state elimination, and determinization either on-the-fly or up-front using the subset

construction. We conduct an extensive experimental evaluation and identify an encoding

that offers the best performance in explicit LTL model checking time and is constantly

faster than the previous best explicit automaton encoding algorithm.



www.manaraa.com

Contents

Abstract ii

List of Illustrations viii

List of Tables xii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Satisfiability Checking for Property Assurance . . . . . . . . . . . . . . . . 10

1.5 Explicit versus Symbolic Model Checking . . . . . . . . . . . . . . . . . . 12

1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 17

2 Linear Temporal Logic Model Checking Theory 18
2.1 Modeling the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Modeling Limitations . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Specifying the Behavior Property: Linear Temporal Logic . . . . . . . . . 21

2.2.1 Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Logical Expressiveness of LTL . . . . . . . . . . . . . . . . . . . . 28

2.3 Specification Debugging via Satisfiability Checking . . . . . . . . . . . . . 38

2.4 LTL-to-Automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Safety versus Liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



www.manaraa.com

v

2.5.1 Specifying the Property as an Automaton . . . . . . . . . . . . . . 52

2.6 LTL→ Symbolic GBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Combining the System and Property Representations . . . . . . . . . . . . 56

2.8 Checking for Counterexamples: Explicitly . . . . . . . . . . . . . . . . . . 62

2.9 Representing the Combined System and Property using BDDs . . . . . . . 63

2.9.1 Representing Automata Using BDDs . . . . . . . . . . . . . . . . 69

2.9.2 BDD Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.10 Checking for Counterexamples: Symbolically . . . . . . . . . . . . . . . . 77

2.10.1 Automata as Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.10.2 Symbolic Methods for Graph Traversal . . . . . . . . . . . . . . . 85

2.10.3 SCC-hull Algorithm for Compassionate Model Checking . . . . . . 89

2.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3 Establishing Better Benchmarks 97
3.1 Importance of Good Benchmarks . . . . . . . . . . . . . . . . . . . . . . . 98

3.2 Counter Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Pattern Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Random Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Scalable Universal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5.1 Explicit Universal Model . . . . . . . . . . . . . . . . . . . . . . . 108

3.5.2 Symbolic Universal Model . . . . . . . . . . . . . . . . . . . . . . 110

3.6 Benchmarks for Model Checking of Safety Properties . . . . . . . . . . . . 112

3.6.1 Model-Scaling Benchmarks . . . . . . . . . . . . . . . . . . . . . 113

3.6.2 Formula-Scaling Benchmarks . . . . . . . . . . . . . . . . . . . . 114

3.7 Checking Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.8 Measurement and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4 LTL Satisfiability Checking 121
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



www.manaraa.com

vi

4.2 Tools for LTL-to-Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.1 Explicit Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2.2 Symbolic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 129

4.3.2 Input Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3.3 Explicit Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3.4 Symbolic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4 The Scalability Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.5 Graceless Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.6 Relation of Size to Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.7 Symbolic Approaches Outperform Explicit Approaches . . . . . . . . . . . 139

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5 A Multi-Encoding Approach for LTL Symbolic Satisfiability Check-

ing 146
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.2.1 CadenceSMV and NuSMV Semantic Subtleties . . . . . . . . . . . 153

5.3 Encoding Symbolic Transition-based Generalized Büchi Automata . . . . . 155
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1

Chapter 1

Introduction

Safety-critical systems have become ubiquitous in our everyday lives and grow increas-

ingly complex every year. They fly our planes, control our nuclear power plants, run our

medical devices, and so much more. Yet, how do we know they are safe? We can use

formal methods for the design, specification, and verification of life-critical hardware and

software systems. Formal methods refers to a collection of verification techniques, all of

which entail the utilization of mathematical logic, to provide checks of correctness with a

very high level of assurance. Verification of a software or hardware system involves check-

ing whether the system in question behaves as it was designed to behave; i.e. it answers the

question, “Does the system as we have designed it have the intended emergent behaviors?”

(If it does not, it is desirable to find out early in the design process!) Design Validation

involves checking whether a system design incorporates the system requirements; i.e. it

answers the question, “Does the logical system representation accurately encapsulate the

system design?” These tasks, system verification and design validation, can be accom-

plished thoroughly and reliably using formal methods.

Due to its automated nature and ease of use, model checking [1, 2] has become one of

the most widely-used formal methods. Model checking is the formal process through which

a desired behavioral property (the specification) is verified to hold for a given system (the

model) via an exhaustive enumeration (either explicit or symbolic) of all reachable system

states and the behaviors that cause the system to transition between them. If the specifica-

tion is found not to hold in all system executions, a counterexample is produced, consisting
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of a trace of the model from a start state to an error state in which the specification is vio-

lated, providing a very helpful tool for debugging the system design; see Figure 1.1. Model

checking has enjoyed broad industrial adaptation and has been successfully used to verify

systems such as air traffic control, airplane separation assurance, autopilots, CPU designs,

life-support systems, medical equipment (such as devices that administer radiation), and

many other systems that ensure human safety. Since model checking requires the writ-

ing of formal properties, it has also helped fuel the industrial adoption of property-based

design, wherein formal specifications are written early in the system-design process and

communicated across all design phases [3, 4, 5, 6, 7].

System

Model

Is

Combination

Empty?

Combine

Model and

Specification

Counterexample

Returned

Fix

System

Specification

Negate

Yes
DONE!

No

Figure 1.1 : System diagram illustrating the model checking process.

For example, in the field of aeronautics, several full-scale air traffic control systems

have been successfully verified using model checking techniques stemming from those we

discuss here. Symbolic model checking [8] in SMV [9] was used to verify the system re-

quirements specification for the Traffic Alert and Collision Avoidance System (TCAS II),

an air traffic guidance system required onboard large commercial aircraft [10]. Properties

checked included the absence of undesirable nondeterminism, mutual exclusion, termina-
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tion, absence of references to undefined parameters, and elimination of inconsistencies in

the protocol specification. SMV also enabled verification of the A-7E aircraft software re-

quirements to ensure internal aircraft modes were consistently enabled so that procedures

for monitoring the aircraft’s windspeed, velocity, and alignment accurately contribute to

the aircraft’s calculated relative position [11]. The Small Aircraft Transportation System

(SATS), which represents an approach to air traffic management for non-towered non-radar

airports in the United States, was model checked to verify the absence of deadlocks, that

aircraft separation is maintained, and that the system is robust in the face of unexpected

rare events such as equipment failures or aircraft deviating off-course [12]. A prototype

for NASA’s Tactical Separation Assured Flight Environment (TSAFE), which provides air-

craft conflict detection and resolution, was also model checked to verify the absence of

synchronization faults, employing compositional verification techniques [13].

Rockwell Collins and the University of Minnesota developed a translator framework,

in coordination with NASA’s Aviation Safety Program, that was successfully used to verify

many complex industrial avionics systems [14]. The ADGS-2100 Adaptive Display and

Guidance System Window Manager is a Rockwell Collins product that ensures the data

from different applications is routed to the correct heads-down and heads-up displays and

performs display management in next-generation commercial aircraft. NuSMV [15], via

this translator framework, was used early in the design process to ensure that the ADGS-

2100 does not contain logic errors that could make critical flight information unavailable

to the flight crew [16]. Similarly, NuSMV was utilized in verifying that the mode logic

of the FCS 5000, a new family of Flight Control Systems, met system requirements [17].

The translator framework was also critical in the verification for Phase I and Phase II of the

Certification Technologies for Advanced Flight Critical Systems (Cer-TA FCS) program

of the U.S. Air Force Research Laboratory (AFRL) [18]. For Phase I, NuSMV was used
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to check against Operational Flight Program (OFP) requirements for an unmanned aerial

vehicle, resulting in significant modifications to the final system to address errors uncovered

in the original Redundancy Management logic that were not uncovered by testing. For

Phase II, Prover [19] was used to verify whether the six actuator commands for the aircraft’s

control surfaces would always be within dynamically computed upper and lower limits,

indicating design errors for another UAV.

1.1 Motivation

The time-honored techniques of simulation and testing also address similar questions and

are extremely useful debugging tools in early stages of system design and verification. Both

of these methods involve checking the system’s behavior on a large, but rarely exhaustive,

set of expected inputs. However, as a system is refined, the remaining bugs become fewer

and more subtle and require more time to uncover. A major gap in the process of using

simulation and/or testing for verification and validation is that there is no way to tell when

these techniques are finished, i.e., when all of the bugs in the system have been found. In

other words, testing and simulation can be used to demonstrate the presence of bugs but

not the absence of bugs. It is not even possible to accurately estimate how many bugs re-

main [20]. Another open question is that of coverage, of both the possible system inputs

and the system state space. Coverage refers, respectively, to the completeness of the set

of system inputs or to the completeness of the specification, such that a set of inputs or a

system state is considered “uncovered” if it is not essential to the success of the verification

procedure [21, 22]. Quite simply, it has been proved that testing and simulation cannot

be used to guarantee an ultra-high level of reliability within any realistic period of time

[23]. For some systems, this is an acceptable risk. For these systems, it is enough to re-

duce the bug level below a certain measurable tolerance, for example in terms of frequency
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in time. For safety-critical systems, or other systems, such as financial systems, where

reliability is key because failures can be potentially catastrophic, we require an absolute

assurance that the system follows its specification via an examination of all possible behav-

iors, including those that are unexpected or unintended. This assurance is provided by a

design-for-verification paradigm incorporating property-based design and model checking.

Design-for-verification refers to a method for incorporating verification as a top consider-

ation of the design process via extending software design best practices to enable better

automated verification [24, 25, 26, 27].

While there are a range of different techniques for formal verification, model checking

is particularly well-suited to the automated verification of finite-state software and hard-

ware systems [28]. Once the system model and specification have been determined, the

performance of the model-checking step is often very fast, frequently completing within

minutes [20]. The counterexample returned in the case where a bug is found provides

necessary diagnostic feedback. Furthermore, iterative refinement and re-checking of the

failed specification can provide a wealth of insight into the detected faulty system behavior.

Model checking lends itself to integration into industrial design life-cycles as the learning

curve is quite shallow and easily outweighed by the advantages of early fault detection. The

required levels of user interaction and specialized expertise needed to effectively utilize a

model checker are minimal compared to other methods of formal verification. Moreover,

partial specifications can be checked, allowing verification steps to occur intermittently

throughout system design. However, there is a trade-off between the high level of automa-

tion provided by model checking and the high level of expressiveness and control that may

be required for verification in some cases. For this reason, certain systems benefit from the

use of alternative verification techniques, such as theorem proving, which involves proving

using formal deduction that the formal system model implies the desired properties. Still,
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model checking’s high level of automation makes it a preferable verification method where

applicable since the performance time and quality of insight obtained from a negative result

when using theorem proving for verification are highly dependent on the particular skill set

of the person providing the proof.

Currently, using a design-for-verification paradigm incorporating property-based de-

sign and model checking for verification requires significantly more time and higher cost

up front than simulations or other forms of testing (with some exceptions, e.g. [18]) but the

significantly higher level of assurance provided by formal verification outweighs the initial

cost of implementation in the case of systems where human life or safety is at risk. Recent

algorithmic advances have vastly increased the size and complexity of the systems that we

can analyze using formal verification methods. (Examples include partial order reduction

[29], the use of bisimulation equivalences [30], compositional verification [31], bounded

model checking [32], and “lite” formal methods such as static analysis [33].) However,

today’s verification techniques do not scale with the ever-increasing complexity and diver-

sity of modern life critical systems. There is an urgent need to extend research in model

checking and property-based design for the verification of ever more challenging problem

domains.

1.2 Model Checking

Formally, the technique of model checking checks that a system, starting at a start state,

satisfies a specification. Let M be a state-transition graph representing the system with a

set of states S and s ∈ S as the start state. Let ϕ be the specification in temporal logic.

We check that M, s |= ϕ. In other words, we check that M satisfies (“models”) ϕ. This

technique of temporal logic model checking was developed independently by Clarke and

Emerson [1] in 1981 and Quielle and Sifakis [2] in 1982. Thus, 1981 is considered the
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Description:

1. Create a mathematical model
of the system.

2. Encapsulate desired properties
in a formal specification.

3. Check that the model satisfies
the specification.

Implementation:

1. Define the system model M containing traces over the
set Prop of propositions.

2. Let specification ϕ be a formula over the set Prop.

3. Check that M |= ϕ:

• Translate the specification ¬ϕ into a Büchi au-
tomaton A¬ϕ and compose it with the system
model M to form AM,¬ϕ.

• Check AM,¬ϕ for nonemptiness. That is, search
for a trace that is accepted by AM,¬ϕ.

– If such a trace exists, return it as a coun-
terexample.

– If no such trace exists, return TRUE.

Table 1.1 : Definition of Model Checking.

birth year of model checking.

In the automata-theoretic approach to model checking [34], we first complement the

specification, ϕ. Then ¬ϕ is translated into an automaton, A¬ϕ, that accepts exactly all

computations that satisfy the formula ¬ϕ. A¬ϕ is then composed with the model M under

verification, forming AM, ¬ϕ [35]. Intuitively, any accepting path in AM, ¬ϕ represents a case

where the system M allows a behavior that violates the specification ϕ. The model checker

then searches for such a trace of the model that is accepted by the automaton AM, ¬ϕ via a

nonemptiness check. If an accepting trace is found, it is returned as a counterexample. If

no such trace exists (i.e. the language L (AM, ¬ϕ) = ∅), we have proved that M, s |= ϕ. This

process is summarized in Table 1.1.

There are two types of model checkers; both use the automata-theoretic approach but in
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different ways. Explicit-state model checkers translate specifications to automata explicitly

and then use an explicit graph-search algorithm [36]. Symbolic model checkers construct

symbolic encodings of these automata and then use a symbolic nonemptiness test [37].

The symbolic construction of the automaton is easier than explicit construction, but the

nonemptiness test is computationally demanding.

1.3 Linear Temporal Logic

The focus of this dissertation is on satisfiability checking and model checking using Linear

Temporal Logic (LTL) specifications. LTL was first introduced as a vehicle for reasoning

about concurrent programs by Pnueli in 1977 [38]. LTL intuitively describes the values

of Boolean system variables over linear timelines. The set of LTL operators combines the

standard Boolean connectives {¬, ∧, ∨, →}, with temporal connectives describing when

some event p happens next time (Xp), always (�p), eventually (^p), until another event q

(pUq), or such that p releases q (pRq). LTL is formally defined in Chapter 2.2.1. Example

LTL properties appear in Figure 1.2.

LTL model checkers follow the automata-theoretic approach; the complemented LTL

specification ¬ϕ is translated to a Büchi automaton1 A¬ϕ, which is a finite automaton on

infinite words that accepts exactly all computations that satisfy the formula ¬ϕ.

LTL model checking requires time exponential in the size of the LTL formula. Specif-

ically, let |M| indicate the size of the system model in terms of state space and |ϕ| indicate

the size of the specification calculated as the total number of symbols: propositions, logical

connectives, and temporal operators. Then the model-checking algorithm for LTL runs in

time |M| · 2O(|ϕ|) [39]. The computational complexity of translating the specification ¬ϕ

into the Büchi automaton A¬ϕ is solely responsible for the exponential model checking

1Büchi automata are formally defined in Chapter 2.4.
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• Liveness: “Every request is followed by a grant”
�(request → ^grant)

• Invariance: “At some point, p will hold forever”
^�p

• “p oscillates every time step”
�((p ∧ X¬p) ∨ (¬p ∧ Xp))

• Safety: “p never happens”
�¬p

• Fairness: “p happens infinitely often”
(�^p)→ ϕ

• Mutual exclusion: “Two processes cannot enter their critical sections at the same time”
�¬(in CS 1 ∧ in CS 2)

• Partial correctness: “If p is true initially, then q will be true when the task is completed”
p→ �(done→ q)

Figure 1.2 : Examples of LTL properties.

computational complexity for an LTL formula ϕ. The logic-to-automaton translation step

is clearly a bottleneck in the model-checking algorithm; the problem of checking a Büchi

automaton AM, ¬ϕ for nonemptiness is NLOGSPACE-complete [40] and decidable in linear

time [41]. The model-checking problem for LTL has been proved to be PSPACE-complete

[42]. The best algorithms for LTL model checking, which are exponential in the length of

the formula but linear in the size of the model, were proposed by Lichtenstein and Pnueli

[39] and Vardi and Wolper [34], the latter algorithm being the basis for most LTL model-

checking tools today. Thus, developing efficient LTL-to-automaton translation algorithms

is essential for formal verification of modern safety-critical systems.
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1.4 Satisfiability Checking for Property Assurance

Inherent to the use of model checking in verification is the writing of formal specifications.

Formal behavioral specifications written early in the system-design process and communi-

cated across all design phases have been shown to increase the efficiency, consistency, and

quality of the system under development [6, 7]. In property-based design the process of

enumerating the requirements of the system under design is followed by the formalization

of those properties into a precise mathematical logic, such as LTL. Property-based design

and other design-for-verification techniques capture design intent precisely, and use formal

logic properties both to guide the design process and to integrate verification into the design

process [5]. Since there are likely to be errors in the initial properties, the shift to speci-

fying desired system behavior in terms of formal logic properties gives us an opportunity

to identify and address these errors in this very initial phase of system design via property

assurance [7, 43].

The need for checking for errors in formal LTL properties expressing desired system

behaviors first arose in the context of model checking. Accordingly, vacuity checking aims

at reducing the likelihood that a property that is satisfied by the model under verification

is an erroneous property [44, 45]. Property assurance is more challenging at the initial

phases of property-based design, before a model of the implementation has been specified.

Inherent vacuity checking is a set of sanity checks that can be applied to a set of temporal

properties, even before a model of the system has been developed, but many possible errors

cannot be detected by inherent vacuity checking [46].

A stronger sanity check for a set of temporal properties is LTL realizability checking,

in which we test whether there is an open system that satisfies all the properties in the

set [47], but such a test is very expensive computationally. In LTL satisfiability checking,

we test whether there is a closed system that satisfies all the properties in the set. We
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consider a system open if the system variables can change via external interactions with

the environment in which the system is running, whereas a closed system is one in which

the environment cannot modify any values of system variables after the initial inputs are

provided to the system [48, 49]. The satisfiability test is thus weaker than the realizability

test, but its complexity is lower; it has the same complexity as LTL model checking [42],

and, as we will show, can be implemented via LTL model checking.

The need for LTL satisfiability checking is widely recognized [50, 51, 52, 53, 54]. Fore-

most, it serves to ensure that the behavioral description of a system is internally consistent

and neither over- or under-constrained. If an LTL property is either valid, or unsatisfi-

able this must be due to an error. Consider, for example, the specification always(b1 →

eventually b2), where b1 and b2 are propositional formulas. If b2 is always true, then this

property is valid. If b1 is satisfiable but b2 is a contradiction, then this property is unsatis-

fiable. Furthermore, the collective set of properties describing a system must be satisfiable

together, to avoid contradictions between different requirements. Satisfiability checking is

particularly important when the set of properties describing the design intent continues to

evolve, as properties are added and refined, and have to be checked repeatedly. Because

of the need to consider large sets of properties, it is critical that the satisfiability test be

scalable, and able to handle complex temporal properties. This is challenging, as LTL

satisfiability, like LTL model checking, is PSPACE-complete [42].

Note that satisfiability checking can be performed via model checking: a universal

model (that is, a model that allows all possible traces) does not satisfy a linear temporal

property ¬ f precisely when f is satisfiable. In this thesis, we explore the effectiveness of

model checkers as LTL satisfiability checkers. We compare the performance of explicit-

state and symbolic model checkers.
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1.5 Explicit versus Symbolic Model Checking

LTL model checkers can be classified as explicit or symbolic. Both types of model checkers

create an automaton AM, ¬ϕ such that L (AM, ¬ϕ) = L (M) ∩ L (A¬ϕ); M satisfies ϕ iff

L (AM, ¬ϕ) = ∅. Otherwise, a word accepted by L (AM, ¬ϕ) is returned as a counterexample

demonstrating an incorrect computation [35]. The difference between explicit and symbolic

model checkers lies in their internal representations of these automata and, subsequently,

the algorithms they use to perform the nonemptiness check.

Explicit model checkers, such as Spin2 [55], construct the state space of the model

explicitly. Explicit model checkers search for a trace falsifying the specification via explicit

state search, checking one state at a time. The automaton AM, ¬ϕ is not empty if there

is a path in the state-transition graph starting in an initial state, reaching some accepting

state, and cycling back through that accepting state. The standard algorithm for finding

strongly connected components in a state-transition graph is Tarjan’s depth-first search

algorithm, which runs in time linear in the sum of the number of states and transitions. In

practice explicit model checkers usually implement slightly more efficient algorithms to

check for nonemptiness by mapping the maximal strongly connected components in the

state-transition graph and then checking if any of them contain an accepting state [56, 57,

58]. However, representing and searching the state space explicitly requires a considerable

amount of space, even when utilizing optimization techniques such as on-the-fly state space

construction [59, 60, 61]. Given that the size of the state space required for model checking

is the largest challenge to its efficacy as a verification technique, utilizing techniques that

conserve space is vital.

The state-explosion problem is widely agreed to be the most formidable challenge fac-

ing the application of model checking to large and complex real-world systems [20, 8, 62,

2http://spinroot.com/
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28]. In short, the number of states required to model concurrent systems grows exponen-

tially with the number of system components, constituting the main practical limitation of

model checking. Sequential hardware circuits with n input variables and k registers require

2n+k states to represent all possible system configurations [28]. Even simple systems, like

an n-bit binary counter, can necessitate large state spaces (in this case, 2n states). In gen-

eral, a system with n variables over a domain of k possible values requires at least kn states

in the model. Unfortunately, the state-explosion problem is unavoidable in the worst case.

However, a host of techniques have been developed over the last three decades that have

successfully eased the problem for certain types of systems. For example, sophisticated

data structures, clever algorithms for representing interleaving of concurrent components

(called partial order reduction [29]), and the use of bisimulation equivalences [30] and

compositional (also called modular) verification [31] to reason about different levels of

abstraction, all address the state-explosion problem.

In order to mitigate the state-explosion problem, symbolic model checkers, such as

CadenceSMV [9], NuSMV [15], and VIS [63], represent the system model symbolically

using sets of states and sets of transitions. They then analyze the state space symboli-

cally using binary decision diagrams (BDDs) [64]. In contrast with explicit-state model

checking, states in symbolic model checking, are represented implicitly, as a solution to

a logical equation. This saves space in memory since syntactically small equations can

represent comparatively large sets of states. All symbolic model checkers use the symbolic

translation for LTL specifications described in [65] and the analysis algorithm of [66]. The

technique of using BDDs in symbolic model checking to reason about Boolean formulas

representing the state space, thereby avoiding building the state graph explicitly, was in-

vented by McMillan [8] and is considered to be one of the biggest breakthroughs in the
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history of model checking for its impact on the state-explosion problem [67].3

1.6 Results

1.6.1 Challenges

There exists a need for algorithms to translate LTL specifications into explicit and symbolic

automata in order to enable more efficient specification debugging and model checking to

allow scaling to accommodate the size and complexity of modern verification problems.

To achieve this goal we must:

1. Provide an easy-to-use method for sanity checking LTL specifications before model

checking in order to increase the likelihood that a mismatch between the specifica-

tions and the system model under verification is due to an error in the system model

and not an error in the specifications.

2. Develop an understanding of the limitations affecting the efficiency, scalability, and

correctness of the current generation of both explicit and symbolic algorithms for

LTL-to-automaton translation.

3. Establish a set of representative benchmarks that will be employed to show empiri-

cally the efficiency, scalability, and correctness of algorithms for LTL-to-automaton

translation, both for LTL satisfiability checking and more general forms of model

checking.

4. Understand the complex relationship between the characteristics of an automaton

encoding an LTL formula and the performance of the algorithms used to analyze

those automata for verification.

3Others independently published ideas similar to McMillan’s symbolic model-checking algorithm at
around the same time. See [68] for a high level overview of these techniques.
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5. Find new ways to encode LTL formulas as both explicit and symbolic automata in

order to improve the performance of analysis by model-checker back-ends.

6. Conclusively illustrate the performance of the developed methods and any significant

improvements over the state of the art utilizing the established benchmarks.

7. Propose methods for improving the performance of LTL satisfiability and model

checking, taking advantage of modern parallel architectures.

Our contributions address these challenges by describing advances in the domains listed

below.

1.6.2 Contributions

The contributions of this dissertation are as follows:

• [For Challenge 1] A new default procedure for debugging LTL specifications: LTL

satisfiability checking as a front-end to the model-checking process. We show that

LTL satisfiability checking is a special case of LTL model checking and advocate

the adaptation of this sanity check as a first step for any verification task employing

LTL specifications, whether it is debugging specifications for property-based design

or checking that a logical system follows a set of specifications via model checking.

• [For Challenges 2-3] A varied set of challenging benchmarks that enable objective

comparison of LTL translation algorithms, in two parts:

– A set of benchmarks that we show can provide a basis for fair evaluation of the

time-efficiency, correctness, and scalability of algorithms for translating LTL

formulas into automata in the context of LTL satisfiability checking. These



www.manaraa.com

16

benchmarks have recently become the de facto standard for evaluating LTL-to-

automaton algorithms in the field.

– A set of benchmarks for LTL model checking of safety properties that serve to

objectively evaluate the performance of automata representing LTL specifica-

tions in the context of verification via model checking.

• [For Challenges 2,4] A comprehensive analysis of all tools that were publicly avail-

able when we conducted our study [52] for explicit and symbolic LTL-to-automaton

translation in the context of LTL satisfiability checking. We objectively evaluate

these algorithms in terms of time-efficiency, correctness, and scalability, whereas

previous studies all focused on automaton size. We disprove the popular theory that

the performance of such automata is correlated with the automata size, either in terms

of number of states, number of transitions, or a combination of both and demonstrate

that the symbolic approach is faster than the explicit approach for LTL satisfiability

checking.

• [For Challenges 4-7] Defining, and proving correct, an extensible set of 29 novel

encodings for LTL formulas as symbolic automata, consisting of combinations of

different formula normal forms, automaton forms, transition forms, and BDD vari-

able orders. We combine these to form a new multi-encoding approach to symbolic

LTL satisfiability checking that can consistently significantly dominate the native

translations of the previous state-of-the-art tools for this task, performing up to ex-

ponentially better than these tools.

• [For Challenges 4-7] Defining, and proving correct, a set of 26 novel explicit au-

tomaton encodings of LTL safety formulas in the form of Promela (PROcess MEta

LAnguage) never claims. These encodings improve the performance of model
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checking by utilizing the advantages of varying the state minimization, alphabet rep-

resentation, state representation, transition encoding, automaton forms, and automa-

ton acceptance conditions. We provide experimental results to show the use of our

methods for constructing explicit automata from LTL formulas, and the previous

state-of-the-art methods, on a wide set of benchmarks, demonstrating the significant

performance gain provided by our methods for LTL model checking.

1.7 Organization of the Dissertation

Chapter 2 introduces the theory underlying the technique of LTL model checking. In Chap-

ter 3 we establish our broad suite of LTL formula benchmarks that has been adopted widely

and used to objectively empirically evaluate LTL-to-automaton tools. Next, in Chapter

4, we establish the specification-debugging technique of LTL satisfiability checking and

evaluate the state-of-the-art tools for implementing this check utilizing the benchmarks of

Chapter 3. Following on the results from Chapter 4, Chapter 5 presents our new multi-

encoding approach for LTL symbolic satisfiability checking. Then Chapter 6 describes our

improved algorithm for explicit LTL satisfiability checking and model checking. Finally,

Chapter 7 concludes with a discussion of our work, its impact, and directions for the future.
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Chapter 2

Linear Temporal Logic Model Checking Theory

2.1 Modeling the System

While it is sometimes possible to perform verification directly on a completed system, this

approach is undesirable for two reasons. Firstly, it is significantly more efficient and cost-

effective to perform verification as early as possible in the system design process, thereby

avoiding the possible discovery of an error in the completed system that requires a redesign.

Secondly, it is simpler and easier to reason about a model of the system than the system

itself because the model includes only the relevant features of the larger system and because

the model is easier to build and redesign as necessary.

Models can be extracted from automata, code, scripts or other higher-level specification

language descriptions, sets of Boolean formulas, or other mathematical descriptions. They

can be comprised of sets of models, such as a set of models of the whole system at different

levels of detail, or a set of models of different independent subsystems plus a model of the

communications protocol between subsystems, etc. Furthermore, there are many strategies

for modeling to optimize clarity, provide generality for reusability, or minimize model

checking time, either by reducing time or space complexity during the model-checking

step. Models can be designed not only to find bugs in a system design but also to solve

problems from other domains. For example, model checking is sometimes used for path

planning where the model and the specification property describe the environment to be

traversed and the constraints on the path, and the counterexample returned constitutes a
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viable path matching those criteria [69].

Whatever the original form of the system model, we eventually translate it into some

form of state-transition system; in this thesis we use Büchi automata. The system is de-

scribed by a set Σ of system variables, also called the system’s alphabet. A state is labeled

by a set of assignments to the system variables. Each unique variable assignment consti-

tutes a unique state. Since not all variable assignments may be possible, the lower bound

on the number of states in a system model is 1 and the upper bound is 2|Σ|, presuming Σ

is a set of Boolean variables. We consider a system to transition from one state to another

when the values of one or more system variables change from the values they had in the

originating state to the values they have in the destination state.

Given that system design and modeling is largely an art form, we simply list here the

chief concerns to keep in mind when creating the system model:

• Defining Σ: What is the minimum set of system variables required to accurately

describe the full set of behaviors of the system?

• Level of abstraction: Which details of the system are relevant to the verification

process and how do we ensure we have included all of these? Which details serve

chiefly to obscure the former? For example, when modeling an automated air traffic

control architecture, we include in the model that the controller can request a specific

trajectory. However, details of the graphical user interface (GUI) used to make this

request are left out.

• Validation:

– system→ model Have we modeled the system correctly?

– model→ system How will we ensure the resulting hardware or software system

created after verification matches the model we have verified?
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2.1.1 Modeling Limitations

Not all systems can be modeled in such a way as to undergo formal verification via sym-

bolic model checking. However the model is created, there is always the chance of cre-

ating more states than can be reasoned about in computer memory and having the model-

checking step halted by the state explosion problem. This problem can be mitigated during

the modeling phase by being cognizant that, in the worst case, the model checker will

have to explore the entire state space. Keeping the state space as small as possible by

modeling only relevant aspects of the system, minimizing the set of state variables, utiliz-

ing sophisticated data structures and abstractions [70], and representing concurrent threads

independently to take maximum advantage of partial order reductions performed by the

model checker, are some strategies for achieving this goal. (Partial order reduction is a

technique that recognizes cases where multiple different interleavings of concurrent pro-

cesses in the system M have the exact same effect on the property ϕ, thus only one such

sequence needs to be checked [71, 29].)

In this thesis, we presume the system model M to have a finite state space defined over

discretely-valued variables. Indeed, the termination of this algorithm is guaranteed by the

finite nature of the state space we are exploring [72]. There are many model checkers that

capably analyze systems with potentially infinite run-times over finite state spaces. These

include Spin [55], NuSMV [15], CadenceSMV [9], and SAL-SMC [73].

Some systems inherently have an infinite state space and thus cannot be model checked

using the techniques presented here; instead, these systems must be verified using special-

ized techniques for providing weaker assurances about larger state spaces or using alter-

native verification techniques, such as theorem proving. Bounded model checking (BMC)

[32] can be used to reason about some models whose state spaces exceed the capacity of

symbolic model checking. For a given k, BMC tools search for a counterexample of length
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k or shorter, so they can prove the presence of errors in the model but cannot be used to

prove the absence of errors. Real-time systems with continuous-valued clocks that can be

described in terms of linear constraints on clock values can be analyzed using timed au-

tomata symbolic model checkers such as UPPAAL [74]. Hybrid automata model checkers

like HyTech can verify some types of hybrid systems, that is, systems with a mix of discrete

and continuous variables [75] but the infinite nature of the state space means termination

of the model-checking algorithm is not guaranteed.

2.2 Specifying the Behavior Property: Linear Temporal Logic

Real-world systems are routinely developed from English-language specifications. Yet,

once these systems are built, there is no way to verify that the resulting systems follow the

English specifications. Consequently, there is also no way to tell whether following the

natural language specifications is a desirable goal, i.e. whether the set of specifications is

internally consistent, logically sound, or complete. For formal verification, English is quite

simply too imprecise. Consider the statement by Groucho Marx, “I once shot an elephant

in my pajamas. How he got in my pajamas I’ll never know,” or the double-meaning of “Stu-

dents hate annoying professors.” In order to check that a system models its specifications,

it is necessary to have a formal, and very precise, notion of exactly what the specifica-

tions say. Therefore, we use logic for the specification language. Logic has the advantage

of being able to express system specifications in a concise and unambiguous way that is

mathematically rigorous and thereby enables automation of the verification process.

We formalize simple grammatical connections using the operators of propositional

logic: ¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication); see Table 2.1. We

reason about atomic propositions, which are Boolean-valued variables. We refer to the set
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Propositional Logic:
¬p not

p ∧ q and
p ∨ q or
p→ q implies

Table 2.1 : List of the operators of propositional logic.

of atomic propositions as Prop. A formula is either an atomic proposition or a sentence

comprised of atomic propositions connected by logical operators. The truth value of a for-

mula is determined by an assignment A , which is a mapping of atomic propositions in the

domain Σ to truth values: A : Σ → {0, 1}. Thus if there are n atomic propositions in the

domain, there are 2n possible assignments for a given formula. A formula ϕ is satisfied by

an assignment A that causes the overall formula to evaluate to true.

2.2.1 Temporal Logics

Continuous systems necessarily involve a notion of time. Propositional logic is not expres-

sive enough to describe such real systems. Yet, English descriptions are even less precise

once we involve time. Consider, for example, the following English sentences:

• I said I would see you on Tuesday.

• “This is the worst disaster in California since I was elected.” [California Governor

Pat Brown]

• “When two trains approach each other at a crossing, both shall come to a full stop

and neither shall start up again until the other has gone.” [Kansas State Legislature,

early 1890’s]

As a result, Amir Pnueli introduced the notion of using temporal logics, which were

originally developed by philosophers for investigating how time is used in natural lan-



www.manaraa.com

23

guage arguments, to reason about concurrent systems [38]. (Burstall [76] and Kröger [77]

independently proposed the use of weaker forms of temporal reasoning about computer

programs at roughly the same time.) Temporal logics are modal logics geared toward the

description of the temporal ordering of events. For most safety-critical systems, tying the

system model to an explicit universal clock is overkill; it exacerbates the state explosion

problem without adding value to the verification process. It is sufficient simply to guarantee

that events happen in a certain partial (or, in some cases, total) order. Temporal logics were

invented for this purpose. Because they describe the ordering of events in time without

introducing time explicitly, temporal logics are particularly effective for describing concur-

rent systems [78]. Temporal logics conceptualize time in one of two ways. Linear temporal

logics consider every moment in time as having a unique possible future. Essentially, they

reason over a classical timeline. In branching temporal logics, each moment in time may

split into several possible futures. In essence, these logics view the structure of time as a

tree, rooted at the current time, with any number of branching paths from each node of the

tree.

Pnueli’s historic 1977 paper [38] proposed the logic LTL. This logic extended proposi-

tional logic with temporal operators G (for “globally”) and F (for “in the future”), which

we also call � and ^, respectively, and introduced the concept of fairness, which ensures

an infinite-paths semantics. LTL was subsequently extended to include theU (“until”) op-

erator originally introduced by Kamp in 1968 [79] and the X (“next time”) operator from

the temporal logic U B (the unified system of branching time) [80]. In 1981, Clarke and

Emerson extended U B, thereby inventing the branching temporal logic they named Com-

putational Tree Logic (CTL) and, with it, CTL model checking. Lichtenstein and Pnueli

defined model checking for LTL in 1985 [39]. (For a more detailed history of the technical

developments that lead from Prior’s early observations on time and Church’s logical spec-
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ification of sequential circuits to LTL and automata-theoretic model checking, see [81].)

The combination of LTL and CTL, called CTL∗, was defined by Emerson and Halpern

in 1986, though there are currently no industrial model checkers for this language.1 Since

both explicit and symbolic model checking were originally defined for CTL, and since LTL

model checking is frequently defined in the literature in relation to CTL model checking,

we would be remiss not to mention the logic CTL here. Therefore, we follow the formal

definition of LTL below with a brief description of the logics CTL and CTL∗ along with

a short discussion of the merits and expressibility of LTL that motivate our focus on LTL

satisfiability checking and LTL model checking.

LTL

Linear Temporal Logic (LTL) reasons over linear traces through time. At each time instant,

there is only one real future timeline that will occur. Traditionally, that timeline is defined

as starting “now,” in the current time step, and progressing infinitely into the future.

LTL formulas are composed of a finite set Prop of atomic propositions, the Boolean

connectives ¬, ∧, ∨, and →, and the temporal connectives U (until), R (release), X (also

called # for “next time”), � (also called G for “globally”), and ^ (also called F for “in the

future”). Intuitively, ϕ U ψ states that either ψ is true now or ϕ is true now and ϕ remains

true until such a time when ψ holds. Dually, ϕ R ψ, stated ϕ releases ψ, signifies that ψ

must be true now and remain true until such a time when ϕ is true, thus releasing ψ. Xϕ

means that ϕ is true in the next time step after the current one. Finally, �ϕ commits ϕ to

being true in every time step while ^ϕ designates that ϕ must either be true now or at some

future time step. We define LTL formulas inductively:

1There was one research prototype CTL∗ model checker called AltMC (Alternating Automata-based
Model Checker). Visser and Barringer created AltMC in 1998 and explained how it could be integrated
into the industrial model checker Spin [82].
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Definition 1

For every p ∈ Prop, p is a formula. If ϕ and ψ are formulas, then so are:

¬ϕ ϕ ∧ ψ ϕ→ ψ ϕU ψ �ϕ

ϕ ∨ ψ Xϕ ϕ R ψ ^ϕ

Furthermore, we define the closure of LTL formula ϕ, cl(ϕ), as the set of all of the subfor-

mulas of ϕ and their negations (with redundancies, such as ϕ and ¬¬ϕ, consolidated). LTL

formulas describe the behavior of the variables in Prop over a linear series of time steps

starting at time zero and extending infinitely into the future.2 We satisfy such formulas over

computations, which are functions that assign truth values to the elements of Prop at each

time instant [84]. In essence, a computation path π satisfies a temporal formula ϕ if ϕ is

true in the zeroth time step of π, π0.

Definition 2

We interpret LTL formulas over computations of the form π : ω → 2Prop, where ω is used

in the standard way to denote the set of non-negative integers. We also use iff to abbreviate

”if and only if.” We define π, i � ϕ (computation π at time instant i ∈ ω satisfies LTL

formula ϕ) as follows:

• π, i � p for p ∈ Prop iff p ∈ π(i).

• π, i � ¬ϕ iff π, i 2 ϕ.

• π, i � ϕ ∧ ψ iff π, i � ϕ and π, i � ψ.

• π, i � ϕ ∨ ψ iff π, i � ϕ or π, i � ψ.

• π, i � Xϕ iff π, i + 1 � ϕ.

2Though we will not discuss them here, some variations of LTL also consider time steps that have hap-
pened in the past. For example, we could add past-time versions of X and U called Y (also called � for
“previous time” or “yesterday”) and S (since), respectively. Past-time LTL was first introduced by Kamp in
1968 [79] but does not add expressive power to the future-time LTL defined here [83].
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• π, i � ϕU ψ iff ∃ j ≥ i, such that π, j � ψ and ∀k, i ≤ k < j, we have π, k � ϕ.

• π, i � ϕ R ψ iff ∀ j ≥ i, iff π, j 2 ψ, then ∃k, i ≤ k < j, such that π, k � ϕ.

• π, i � �ϕ iff ∀ j ≥ i, π, j � ϕ.

• π, i � ^ϕ iff ∃ j ≥ i, such that π, j � ϕ.

We take |= (ϕ) to be the set of computations that satisfy ϕ at time 0, i.e., {π : π, 0 � ϕ}.

We define the prefix of an infinite computation π to be the finite sequence starting from the

zeroth time step, π0, π1, . . . , πi for some i ≥ 0.

Equivalences While we have presented the most common LTL syntax, operator equiv-

alences allow us to reason about LTL using a reduced set of operators. In particular, the

most common minimum set of LTL operators is ¬, ∨, X, andU. From propositional logic,

we know that (ϕ → ψ) is equivalent to (¬ϕ ∨ ψ) by definition and that (ϕ ∧ ψ) is equiv-

alent to ¬(¬ϕ ∨ ¬ψ) by DeMorgan’s law. We can define (^ϕ) as (true Uϕ). (Similarly,

(�ϕ) ≡ ( f alse R ϕ).) The expansion laws state that (ϕ U ψ) = ψ ∨ [ϕ ∧ X(ϕ U ψ)] and

(ϕ R ψ) = ψ∧ [ϕ∨X(ϕ R ψ)]. The operators � and ^ are logical duals as (�ϕ) is equivalent

to (¬^¬ϕ) and (^ϕ) is equivalent to (¬�¬ϕ). Finally,U and R are also logical duals. Since

this last relationship is not intuitive, we offer proof below. (Incidentally, X is the dual of

itself: (¬Xϕ) ≡ (X¬ϕ).)

Informally, ϕ U ψ signifies that either ψ is true now (in the current time step) or ϕ is

true now and for every following time step until such a time when ψ is true. Note that this

operator is also referred to as strong until because ψ must be true at some time. Conversely,

weak until, sometimes included as the operatorW, is also satisfied if ϕ is true continuously

but ψ is never true. Formally,
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π, i � ϕW ψ iff either ∀ j ≥ i, π, j � ϕ or ∃ j ≥ i, such that π, j � ψ and ∀k, i ≤ k < j,

we have π, k � ϕ.

R is the dual of U, so ϕ R ψ = ¬(¬ϕ U ¬ψ). We say that “ϕ releases ψ” because ψ must

be true now and, in the future, ¬ψ implies ϕ was previously true. Note that at that point in

the past, both ϕ and ψ were true at the same time and that ϕ may never be true, as long as

ψ is always true. We can define R in terms of the U-operator using the following lemma,

where iff is used in the standard way to abbreviate ”if and only if.”

Lemma 2.1

¬(¬aU ¬b) = a R b.

Proof: We use the formal semantic definitions ofU and R, given in [85].

π, i |= ξ U ψ iff for some j ≥ i, we have π, j |= ψ

and for all k, i ≤ k < j, we have π, k |= ξ.

π, i |= ¬(ξ)U ¬(ψ) iff for some j ≥ i, we have π, j |= ¬(ψ)

and for all k, i ≤ k < j, we have π, k |= ¬(ξ).

π, i |= ¬(ξ)U ¬(ψ) iff ((∃ j ≥ i : π, j |= ¬(ψ))

∧(∀ k, i ≤ k < j : π, k |= ¬(ξ))).

π, i |= ¬(¬(ξ)U ¬(ψ)) iff ¬((∃ j ≥ i : π, j |= ¬(ψ))

∧(∀ k, i ≤ k < j : π, k |= ¬(ξ))).

iff (¬(∃ j ≥ i : π, j |= ¬(ψ))

∨¬(∀ k, i ≤ k < j : π, k |= ¬(ξ))).

iff ((∀ j ≥ i : π, j 6|= ¬(ψ))

∨(∃ k, i ≤ k < j : π, k 6|= ¬(ξ))).
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iff (∀ j ≥ i : π, j |= ψ

∨∃ k, i ≤ k < j : π, k |= ξ).

iff (∀ j ≥ i : π, j 6|= ψ

→ ∃ k, i ≤ k < j : π, k |= ξ).

iff for all j ≥ i if π, j 6|= ψ,

then for some k, i ≤ k < j we have π, k |= ξ.

iff π, i |= ξ R ψ. �

2.2.2 Logical Expressiveness of LTL

Inevitably the question arises: why LTL? What are the alternative specification logics?

Why (and when) should we choose LTL? In order to put LTL in the proper context, we

briefly discuss the most viable alternatives and discuss when LTL is (and is not) an appro-

priate choice.

CTL

Computational Tree Logic (CTL) is a branching time logic that reasons over many possible

traces through time. Historically, CTL was the first logic used in model checking [1] and

it remains a popular specification logic. Unlike LTL, for which every time instance has

exactly one immediate successor, in CTL a time instance has a finite, non-zero number

of immediate successors. A branching timeline starts in the current time step, and may

progress to any one of potentially many possible infinite futures. In addition to reasoning

along a timeline, as we did for linear time logic, branching time temporal operators must

also reason across the possible branches. Consequently, the temporal operators in CTL are

all two-part operators with one part specifying, similarly to LTL, the action to occur along

a future timeline and another part specifying whether this action takes place on at least one
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Linear Temporal Logic (LTL) formulas reason about linear timelines:

• a finite set Prop of atomic propositions

• Boolean connectives: ¬, ∧, ∨, and→

• temporal connectives:
Xϕ next time
ϕU ψ until
ϕ R ψ release
�ϕ also called G for “globally”
^ϕ also called F for “in the future”

Computational Tree Logic (CTL) reasons about branching paths:

• temporal connectives are always proceeded by path quantifiers:
A for all paths
E exists a path

Figure 2.1 : Syntax of LTL and CTL.

branch or all branches.

There is an automata-theoretic approach to branching time model checking, similar

to the ideas described in this dissertation for LTL. While we do not translate branching

temporal formulas into nondeterministic tree automata due to the double exponential blow-

up inherent in this process, we can translate them into alternating tree automata in linear

time [86].

LTL vs CTL

The logical expressiveness of LTL and CTL is incomparable [87]. Since CTL allows ex-

plicit existential quantification over paths, it is more expressive in some cases where we

want to reason about the possibility of the existence of a specific path through the transition
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Expressiveness

LTL CTL

Figure 2.2 : Venn dia-
gram showing the expres-
siveness of common tem-
poral logics.

system model M, such as when M is best described as a com-

putation tree. For example, there are no LTL equivalents of

the CTL formulas (EX p) and (A�E^p) since LTL cannot

express the possibility of p happening on some path (but not

necessarily all paths) next time, or in the future. LTL de-

scribes executions of the system, not the way in which they

can be organized into a branching tree. Intuitively, it is dif-

ficult (or impossible) to express in LTL situations where dis-

tinct behaviors occur on distinct branches at the same time.

Conversely, it is difficult (or impossible) to express in CTL

some situations where the same behavior may occur on distinct branches at distinct times,

a situation where the ability of LTL to describe individual paths is quite useful. Realisti-

cally, the former rarely happens and LTL turns out to be more expressive from a practical

point of view than CTL [88].

Model Checking Time Complexity The model-checking algorithms for LTL and CTL

are different. The major argument in favor of using a branching time logic, like CTL, in-

stead of LTL for property specification is that the model-checking problem for CTL has

lower computational complexity than for LTL. Specifically, let |M| indicate the size of the

system model in terms of state space and |ϕ| indicate the size of the specification calculated

as the total number of symbols: propositions, logical connectives, and temporal operators.

Then the model-checking algorithm for CTL runs in time O(|M||ϕ|) [89] and the model-

checking algorithm for LTL runs in time |M| · 2O(|ϕ|) [39]. Intuitively, this is because CTL is

state-based (i.e. reasoning over states in time), and this set of states is easily converted into

an automaton whereas the succinct path-based model of LTL (where many possible paths

may pass through a single state) must be expanded. This difference in the computational
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complexity of translating the specification ¬ϕ into the Büchi automaton A¬ϕ is solely re-

sponsible for the difference in the model checking computational complexity for an LTL

formula ϕ and for a CTL formula ϕ. There is no hope of reconciling the time complexity of

the general model-checking problem for LTL with that of CTL since the model-checking

problem for LTL is PSPACE-complete [42].

However, the comparison of the specification logics LTL and CTL by time complexity

is somewhat misleading and certainly not significant enough to be the sole deciding factor

of which logic to use for specification. Though model checking can be done in time linear

in the size of the specification for CTL [89, 2] the requirement for double-operators means

that CTL formulas tend to be longer and more complicated than LTL formulas. In fact,

it is not entirely clear how much effect the exponential blow-up for LTL model checking

has in practice given that the size of most LTL specifications is very small. Furthermore,

if we examine specific, practical variants of the model-checking problem for CTL, we find

that the complexity dominance of this logic does not hold [88]. Performing specification

debugging via satisfiability checking as we describe in this dissertation is still PSPACE-

complete for LTL [42] but is EXPTIME-complete for CTL [90, 91]. For the practical

model checking applications of compositional verification, verification of open or reactive

systems (i.e. those systems that interact with an environment), verification of concurrent

systems, and automata-theoretic verification, LTL-based algorithms either dominate those

for CTL or perform similarly [92].

Since there are fast, efficient tools for LTL model checking, and it is questionable to

what extent this theoretical difference affects the process of model checking in practice, we

focus on the language that is more suitable for specification. From a system design point of

view, it is more important to be able to write clear and correct specifications to input into

the model checker.

Usually, we want to describe behavioral, rather than structural, properties of the model,
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making LTL the better choice for specification since such properties are easily expressed in

LTL but may not be expressible in CTL. For example, we may want to say that p happens

within the next two time steps, (X p ∨ XX p), or that if p ever happens, q will happen too,

(^p→ ^q), neither of which is expressible in CTL [93]. Similarly, we cannot state in CTL

that if p happens in the future, q will happen in the next time step after that, which is simply

^(p ∧ X q) in LTL [28]. Worst of all, it is not obvious that these useful properties should

not be expressible in CTL. Indeed, a thorough comparison of the two logics concludes that

CTL is unintuitive, hard to use, ill-suited for compositional reasoning, and fundamentally

incompatible with semi-formal verification while LTL suffers from none of these inherent

limitations and is better suited to model checking in general [88].

Fairness LTL is a fair language whereas CTL is not. That is to say that LTL can ex-

press properties of fairness, including both strong fairness and weak fairness whereas CTL

cannot (though CTL model checkers generally allow users to specify fairness statements

separately to account for this shortcoming). For example, the LTL formula (�^p → ^q),

which expresses the property that infinitely many p’s implies eventually q, is the form of

a common fairness statement: a continuous request will eventually be acknowledged. Yet

this sentiment is not expressible in CTL. Since fairness properties occur frequently in the

specifications we wish to verify about real-life reactive systems, this adds to the desirability

of LTL as a specification language.

For another example, the common invariance property ^�p, meaning “at some point,

p will hold forever” cannot be expressed in CTL. It is difficult to see why this formula

is not equivalent to the CTL formula A^A�p; after all, we are basically claiming that

on all paths, there’s a point where p holds in all future states. (The standard semantic

interpretation of LTL corresponds to the “for all paths” syntax of CTL. For this reason, we

consider there to be an implicitA operator in front of all LTL formulas when we compare
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Figure 2.3 : A situation where the LTL formula ^�p holds but the CTL formula
(A^A�p) does not.

them to CTL formulas.) To illustrate the inequivalence of these two formulas, we show in

Figure 2.3 a timeline that satisfies ^�p but does not satisfy A^A�p. Note that A^A�p

does not hold along the vertical spine in particular – there is never a point whereA�p holds

along this path. There is always one child where p holds forever and one child where ¬p

holds.

Figure 2.4 : A situation where the three equivalent formulas LTL formula X^p,
LTL formula ^X p, and CTL formula AXA^ p hold but the CTL formula
(A^AX p), which is strictly stronger, does not.

Another frequently cited example of the unintuitiveness of CTL is the property that the

CTL formulaAXA^ p is not equivalent to the formula (A^AX p). Again, the distinction

is subtle. The former formula states that, as of the next time step, it is true that p will

definitely hold at some point in the future or, in other words, p holds sometime in the strict
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future. This formula is equivalent to the LTL formulas X^p and ^X p. On the other hand,

the meaning of (A^AX p) is the strictly stronger (and actually quite strange) assertion that

on all paths, in the future, there is some point where p is true in the next time step on all of

the branches from that point. Figure 2.4 illustrates this subtlety. Note that in this timeline,

p is true in the strict future along every path but there is not a point on every path where p

is true in the next step on all branches.

These examples illustrate why LTL is frequently considered a more straightforward

language, better suited to specification and more usable for verification engineers and sys-

tem designers. LTL is the preferred logic of the two for general property specification and

on-the-fly verification [94]. Verification engineers have found expressing specifications in

LTL to be more intuitive, and less error-prone, than using CTL, particularly for verifying

concurrent software architectures [95]. The vast majority of CTL specifications used in

practice are equivalent to LTL specifications; it is rare that the added ability to reason over

computation tree branches is needed and it frequently requires engineers to look at their

designs in an unnatural way [88]. The expressiveness, simplicity, and usability of LTL,

particularly for practical applications like open system or compositional verification, and

specification debugging, make it a good choice for industrial verification.

CTL∗

Emerson and Halpern first invented the logic CTL∗ in 1983 [96]. This logic combines

the syntaxes of the two logics LTL and CTL. It includes all of the logical operators in

LTL and both path quantifiers of CTL but does not have the CTL restriction that temporal

operators must appear in pairs. Both LTL and CTL are proper subsets of CTL∗, as are all

combinations of LTL and CTL formulas; CTL∗ is more expressive than both LTL and CTL

combined. For example, the formulas E(�^p) and A(^�p) ∨ A�(E^p) are both in CTL∗

but in neither LTL nor CTL.
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However, this expressive power comes at a great cost. The model-checking problem for

CTL∗ is PSPACE-complete [42], which the same general complexity as for LTL, though

the algorithm is considerably more complex to implement and there are currently no model

checkers for this logic. Indeed, for practical model-checking problems such as compo-

sitional verification and verification of open or reactive systems (i.e. those systems that

interact with an environment) CTL∗ is dominated by LTL [92]. Furthermore, the sim-

ple task of specification debugging via satisfiability checking is 2EXPTIME-complete for

CTL∗ [97, 98]. Simply translating a CTL∗ specification into an automaton for model check-

ing involves a doubly-exponential blow-up [99]. So, despite the deceptive time complexity

for the general model-checking problem, adding branching to LTL is not free. In practice,

should LTL prove to be too limited to express a desired property, CTL∗ is almost certainly

sufficient [94]. However, the lack of industrial model-checking tools that accept CTL∗

specifications is a deterrent to the use of this logic.

Industrial Logics Based on LTL

In several cases, industrial companies have defined extensions of LTL, specialized for their

verification needs. Usually these linear time logics add operators to make the expression of

specific properties easier and to extend the specification language to full ω-regularity. The

optimal position in the trade-off between logical expressiveness and model checking time

complexity remains under discussion.

Definition 3

An ω-regular expression is an expression of the form
⋃

i αi(βi)ω where i is non-zero and

finite and α and β are regular expressions over the alphabet Σ.

We refer to the standard definition of a regular expression, comprised of the elements of

the alphabet Σ, parentheses, and the operators +, ·, and ∗ for union, concatenation, and star-
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closure, respectively. An ω-regular expression adds the exponent ω that, in some sense,

extends the ∗-exponent since a∗ designates an arbitrary, possibly zero, finite number of

repetitions of a while aω designates an infinite number of repetitions of a.

Definition 4

An ω-regular language is one that can be described by an ω-regular expression. Also, a

language is ω-regular if and only if there exists a Büchi automaton that accepts it. (We

discuss Büchi automata in detail in Chapter 2.4.) The family of ω-regular languages is

closed under union, intersection, and complementation.

LTL can express a strict subset of ω-regular expressions; it can describe specifically

the ∗-free ω-regular events. For example, LTL cannot express the sentiment that a partic-

ular event must occur exactly every n time steps of an infinite computation and that this

event may or may not occur during any of the other time steps. Wolper first pointed this

out and defined Extended Temporal Logic (ETL), which augmented LTL with operators

corresponding to right-linear grammars, thus expanding the expressiveness to all proper-

ties that can be described by ω-regular expressions [100]. Vardi and Wolper followed this

by proposing ETLs where the temporal operators are defined by finite ω-automata, which

provide useful tools for hardware specification [40]. However, model checking with ETL

involves a difficult complementation construction for Büchi automata [101]. Banieqbal

and Barringer and, separately, Vardi created a linear µ-calculus by extending LTL with

fixpoint operators, which allows for a more natural description of constructs like recur-

sive procedures and modules in compositional verification [102, 103]. Sistla, Vardi, and

Wolper’s Quantified Propositional Temporal Logic (QPTL) avoids common user difficul-

ties with fixpoint calculi and achieves ω-regularity instead by allowing quantification over

propositional variables but at the cost of a nonelementary time complexity [104]. Emer-

son and Trefler proposed dealing with real-time correctness properties while avoiding the
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nonelementary time complexity by using Real Time Propositional LTL (RTPLTL), which

adds time bounds to temporal operators referencing multiple independent clocks but can be

checked in time exponential in the size of the regular expression [105].

Verification engineers in industry have also extended LTL to suit their specific needs.

After successful verification efforts from 1995 to 1999 using symbolic model checking with

specifications in FSL, a home-grown linear temporal logic specialized for hardware check-

ing [106], Intel developed the formal specification language, ForSpec [107]. The temporal

logic underlying ForSpec, called FTL, extends past-time LTL to add explicit operators for

manipulating multiple clocks and reset signals, expressions for reasoning about regular

events, and time bounds on the temporal operators that allow users to specify time win-

dows during which an operator is satisfied. The cost of the increased expressivity of FTL is

that checking satisfiability is EXPSPACE-complete. IBM developed their own “syntactic

sugar” [108] in parallel from the early 1990s. IBM’s Sugar extends LTL with Sugar Ex-

tended Regular Expressions (SEREs), the ability to explicitly reference multiple indepen-

dent clocks, and limited Optional Branching Extensions (OBEs) [109]. Motorola’s CBV

and Verisity’s Temporal e [110] are also linear time logics that achieve full ω-regularity

by adding regular expressions and clock operations. In 2003, the standardization com-

mittee Accellera, considering these four industrial specification languages, announced the

industry standard languages SystemVerilog Assertion (SVA) language [111] and Property

Specification Language (PSL), which is based chiefly on Sugar with heavy influence from

ForSpec [112, 113]. It is worth noting that restricted variants of LTL have also proved use-

ful for specializing the logic without increasing computational complexity. For example,

Allen Linear Temporal Logic (ALTL) [114] marries a restricted LTL, without X-, U-, or

R-operators, with Allen’s temporal intervals [115], but ALTL satisfiability checking is only

NP-complete.
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In summary, the industrial languages described in this section are all based on LTL and

use model checking methods similar to those described in this dissertation. Thus, insights

into LTL model checking extend to all of these languages.

2.3 Specification Debugging via Satisfiability Checking

Just as designing a bug-free system is difficult (motivating us to employ model checking

to find the bugs), writing correct specifications to check the system is difficult. Therefore,

an important step in between writing specifications and performing the model-checking

step is specification debugging. As specifications are usually significantly smaller than

the systems they describe, they are significantly easier to check. The goal of specification

debugging is to answer, as best as possible, the question “do the specifications say what

I meant?” Though it is impossible to answer this question absolutely, it is usually suffi-

cient to run a series of tests on the set of specifications meant to flag situations where the

specifications clearly cannot match their authors’ intentions.

When the model does not satisfy the specification, model-checking tools accompany

this negative answer with a counterexample, which points to an inconsistency between the

system and the desired behaviors. It is often the case that there is an error in the system

model or in the formal specification. Such errors may not be detected when the answer of

the model-checking tool is positive: while a positive answer does guarantee that the model

satisfies the specification, the answer to the real question, namely, whether the system has

the intended behavior, may be different. We need to ask two questions:

1. If there is disagreement between the system model and the specification, which one

has the error?

2. If there is agreement, is this caused by an error? (A positive model checking result

does not mean there is no error. For example, the specification could have a bug!)
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Testing can be performed by specification authors writing small system models that they

believe should or should not satisfy each specification and then verifying this is the case via

model checking. However, this process can be time-consuming, tedious, and error-prone.

The realization of this unfortunate situation has led to the development of several sanity

checks for formal verification [116]. The goal of these checks is to detect errors in the

system model or the properties. Sanity checks in industrial tools are typically simple, ad

hoc tests, such as checking for enabling conditions that are never enabled [117]. Standard

specification testing can also be preformed more intelligently using concept analysis, which

produces a hierarchical set of clusters of test traces grouped by similarities [118]. This

technique allows the specification author to inspect a small number of clusters instead of a

large number of individual traces and use the similarities in the clusters to help determine

whether the set of traces in each cluster points to specification error(s) or not.

Of course, it is extremely desirable to run automated tests on specifications. Vacuity

detection provides a systematic approach for checking whether a subformula of the speci-

fication does not affect the satisfaction of the specification in the model. Intuitively, a spec-

ification is satisfied vacuously in a model if it is satisfied in some non-interesting way. For

example, the LTL specification �(req → ^grant) (“every request is eventually followed

by a grant”) is satisfied vacuously in a model with no requests. While vacuity checking

cannot ensure that whenever a model satisfies a formula the model is correct, it does iden-

tify certain positive results as vacuous, increasing the likelihood of capturing modeling and

specification errors. Several papers on vacuity checking have been published over the last

few years [119, 44, 120, 121, 122, 45, 123, 124], and various industrial model-checking

tools support vacuity checking [119, 44, 120].

At a minimum, it is necessary to employ LTL satisfiability checking [52]. If the spec-

ification is valid, that is, true in all models, then model checking this specification always

results in a positive answer. Basically, the specification is irrelevant. Consider for example
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the specification �(b1 → ^b2), where b1 and b2 are propositional formulas. If b1 and b2 are

logically equivalent, then this specification is valid and is satisfied by all models. Clearly,

if a formal property is valid, then this is certainly due to an error. Similarly, if a formal

property is unsatisfiable, that is, true in no model, then this is also certainly due to an error.

For example, if the specification is �(b1 ∧^b2) where b1 and b2 are contradictory, then the

specification can never be true. Even if each individual property written by the specifier is

satisfiable, their conjunction may very well be unsatisfiable. Recall that a logical formula

ϕ is valid iff its negation ¬ϕ is not satisfiable. Thus, as a necessary sanity check for debug-

ging a specification, we must ensure that both the specification ϕ and its negation ¬ϕ are

satisfiable and that the conjunction of all specifications is satisfiable.

Fortunately, this check is easily performed using standard model-checking tools to

check the specifications against a universal model before checking them against the system

model. A basic observation underlying this conclusion is that LTL satisfiability checking

can be reduced to model checking. Consider a formula ϕ over a set Prop of atomic propo-

sitions. If a model M is universal,3 that is, it contains all possible traces over Prop, then ϕ

is satisfiable precisely when the model M does not satisfy ¬ϕ. Thus, it is easy to include

satisfiability checking using LTL model-checking tools as a specification debugging step

in the verification process.4

2.4 LTL-to-Automaton

In LTL model checking, we check LTL formulas representing desired behaviors against a

formal model of the system designed to exhibit these behaviors. To accomplish this task,

3See Chapter 3.5 for implementations of universal models.
4In contrast, for branching time logics such as CTL or CTL∗, satisfiability checking is significantly

harder than model checking. For LTL, both satisfiability checking and model checking are PSPACE-
complete with respect to formula size [42]. On the other hand, with respect to formula size, model check-
ing is NLOGSPACE-complete for CTL [125] and PSPACE-complete for CTL∗ [41], while satisfiability is
EXPTIME-complete for CTL [91, 90] and 2EXPTIME-complete for CTL∗ [98, 97]
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we employ the automata-theoretic approach, in which the LTL formulas must be translated

into Büchi automata5 [34]. This step is performed automatically by the model checker.

Definition 5

A Büchi Automaton (BA) is a quintuple (Q,Σ, δ, q0, F) where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q × Σ × Q is a transition relation.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of final states.

A run of a Büchi automaton over an infinite word w = w0,w1,w2, . . . ∈ Σ is a sequence of

states q0, q1, q2, . . . ∈ Q such that ∀i ≥ 0, δ(qi,wi) = qi+1. An infinite word w is accepted

by the automaton if the run over w visits at least one state in F infinitely often. We denote

the set of infinite words accepted by an automaton A by Lω(A). A Generalized Büchi

Automaton (GBA) is one for which F is a set of acceptance sets such that an infinite word

w is accepted by the automaton if the run over w visits at least one state in each set in F

infinitely often.

We also define the extended transition relation δω : Q × Σω × Q, which takes a string,

rather than a single character, as the second argument and yields the result of reading in

that string. Let λ represent the empty string. Then we can define δω recursively. For all

q ∈ Q, w ∈ Σω, σ ∈ Σ:

δω(q, λ) = q

δω(q,wσ) = δ(δω(q,w), σ).

5Büchi automata were introduced by J.R. Büchi in 1962 [126].
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A computation satisfying LTL formula ϕ is an infinite word over the alphabet Σ = 2Prop,

which is accepted by the Büchi automaton Aϕ corresponding to ϕ. For this reason, Aϕ

is also called a tester for ϕ; it characterizes all computations that satisfy ϕ. The set of

computations of ϕ comprise the language Lω(Aϕ). Every LTL formula has an equivalent

Büchi automaton. The next theorem relates the expressive power of LTL to that of Büchi

automata.

Theorem 2.1

Given an LTL formula ϕ, we can construct a nondeterministic Büchi automaton Aϕ =〈
Q,Σ, δ, q0, F

〉
such that |Q| is in 2O(|ϕ|), Σ = 2Prop, and Lω(Aϕ) is exactly |= ϕ.

Proof of Theorem 2.16

For simplicity, presume ϕ is in negation normal form (¬ appears only preceding propo-

sitions) and the temporal operators � and ^ have been eliminated via the equivalences

described in Chapter 2.2.1.

Recall that the closure of LTL formula ϕ, cl(ϕ) is the set of all of the subformulas of ϕ

and their negations (with redundancies such as ϕ and ¬¬ϕ consolidated). Specifically,

• ϕ ∈ cl(ϕ).

• ¬ψ ∈ cl(ϕ)→ ψ ∈ cl(ϕ).

• ψ ∈ cl(ϕ)→ ¬ψ ∈ cl(ϕ).

• ξ ∧ ψ ∈ cl(ϕ)→ ξ, ψ ∈ cl(ϕ).

• ξ ∨ ψ ∈ cl(ϕ)→ ξ, ψ ∈ cl(ϕ).

• X ψ ∈ cl(ϕ)→ ψ ∈ cl(ϕ).

• ξ U ψ ∈ cl(ϕ)→ ξ, ψ ∈ cl(ϕ).

• ξ R ψ ∈ cl(ϕ)→ ξ, ψ ∈ cl(ϕ).

6The proof here was inspired by the direct proof techniques employed in [39] (which proved a vari-
ant of Theorem 2.1 that reasons more directly over graphs instead of Büchi automata), [127], and [28].
Other proof strategies include the use of alternating automata [85, 128]. Alternatively, one can consider
the Büchi automaton Aϕ to be a combination of two automata, a local automaton that reasons about con-
secutive sequences of states and an eventuality automaton that reasons about eventuality formulas (U− or
F -subformulas) [34, 40, 129, 130]. (Note that [40, 129, 130] proved a variant of Theorem 2.1 for types of
Extended Temporal Logic (ETL) that subsume LTL.)
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Recall that the expansion laws state that (ξ U ψ) = ψ ∨ [ξ ∧ X(ξ U ψ)] and (ξ R ψ) =

ψ ∧ [ξ ∨ X(ξ R ψ)]; we can use these laws to construct an elementary set of formulas.

An elementary set of formulas with respect to the closure of ϕ is a maximal, consistent

subset of cl(ϕ). A cover C of a set of formulas Ψ is a set of sets C = C0,C1, . . . such that∧
ψ∈Ψ ψ ↔

∨
Ci∈C

∧
γ∈Ci

γ. In other words, any computation satisfying the conjunction of

the formulas in the set Ψ also satisfies the conjunction of the formulas in at least one of the

cover sets Ci ∈ C. An elementary cover is a cover comprised exclusively of elementary

(maximal, consistent) sets of formulas.

We define each elementary cover set Ci ∈ C for the cover C of formula ϕ to have the

following properties:

1. Ci ⊆ cl(ϕ)

2. Ci is logically consistent (i.e. does not contain any logical contradictions). Specifi-

cally, for all subformulas ξ, ψ ∈ cl(ϕ),

• ψ ∈ Ci ↔ ¬ψ < Ci

• ξ ∧ ψ ∈ Ci ↔ ξ, ψ ∈ Ci.

• ξ ∨ ψ ∈ Ci ↔ (ξ ∈ Ci) or (ψ ∈ Ci).

3. Ci is temporally consistent (i.e. logically consistent with respect to temporal opera-

tors). We use⇒ to denote subformulas that are syntactically implied by a set Ci.

• (ξ U ψ ∈ cl(ϕ))→ [(ψ ∈ Ci)⇒ (ξ U ψ ∈ Ci)].

• [(ξ U ψ ∈ Ci) ∧ (ψ < Ci)]→ (ξ ∈ Ci).

• (ξ R ψ ∈ cl(ϕ))→ [(ψ ∈ Ci)⇒ (ξ R ψ ∈ Ci)].

4. Ci is maximal. That is, for every subformula ψ ∈ cl(ϕ), either ψ ∈ Ci or ¬ψ ∈ Ci.
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We can obtain an elementary cover of ϕ by applying the expansion laws to ϕ until ϕ is a

propositional formula in terms of only constants (true or f alse), propositions, or X-rooted

subformulas. Then ϕ has no U- or R-formulas occurring at the top level. We convert this

expanded formula into disjunctive normal form (DNF) to obtain the cover. Each disjunct is

an elementary set and the set of disjuncts is the elementary cover of ϕ. We round out each

set Ci with the formulas in cl(ϕ) that are syntactically implied by Ci according to the rules

listed above. We define a state in our automaton Aϕ for each cover set Ci in the cover of ϕ.

We label each such state with the subformulas in the elementary set to which it corresponds.

(Note that the states in the cover of ϕ will be labeled by ϕ.) We will use the X-subformulas

of each state to define the transition relation.

Define q0 as the state or set of states in the cover of ϕ (i.e. those labeled by ϕ). If there

is more than one such state and we do not want to define q0 to be a set of initial states, we

can create a singular start state with outgoing λ-transitions7 to all such states. That is, for

ϕ-labeled states s0, s1, . . ., we define δ(q0, λ) = s0; δ(q0, λ) = s1; . . ..

Initially, we set Q = q0, which is the cover of ϕ. For each state q ∈ Q, we apply the

expansion laws and compute the successors of q as a cover of {ψ : Xψ ∈ q}. For each

computed successor state q′ of q, we add a transition in δ, creating a new state q′ ∈ Q if

necessary. That is, ∀q′, σ : δ(q, σ) = q′,Xψ ∈ q → ψ ∈ q′. We iterate in this fashion until

all X-subformulas of all of the states in Q have been covered. The result is a closed set of

elementary covers, such that there is an elementary cover in the set for each X-subformula

of each disjunct of each cover in the set.8 Constructed in this way, Q is at most the set of

all elementary sets of formulas in the closure of ϕ (2cl(ϕ)) and is thus bounded by 2O(|ϕ|).

7We refer to λ as the empty string. The presence of a λ-transition in a nondeterministic automaton indi-
cates that the automaton may traverse that transition at any time, without progressing any further along the
computation path.

8Note that any LTL formula has infinitely many elementary covers and which one is chosen for this
construction in practice can significantly affect the performance of the model-checking problem. Thus, many
researchers study optimizing this construction [131, 132, 133, 134, 135, 136, 137, 138].
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Finally, we define the acceptance conditions, ensuring that eachU-subformula is even-

tually fulfilled and not simply promised forever. We do this by creating for every subfor-

mula of ϕ of the form ξ U ψ a set Fξ U ψ ∈ F containing all states labeled by ψ, which

fulfill the U-subformula, and all states not labeled by (ξ U ψ), which do not promise it.

This is the basic construction by Daniele, Giunchiglia, and Vardi [132].

We prove each direction separately based upon these definitions.

If: π ∈ Lω(Aϕ)→ π |= (ϕ)

Presume π ∈ Lω(Aϕ). Then there is an accepting run in Aϕ that we will label ρ =

q0, q1, . . . which, by definition of Q, corresponds to the sets C0,C1, . . .. By the definition

of q0 as the cover of ϕ, we know that ϕ holds in this state. Stated another way, the atomic

propositions that are true in q0 are true in the first time step of a satisfying computation of

ϕ; π0 ∈ C0. It remains to show that the transition relation and acceptance conditions imply

that π |= (ϕ), or, in other words, (C0 ∩ Prop)(C1 ∩ Prop)(C2 ∩ Prop) . . . |= ϕ. We show by

structural induction on the structure of ψ ∈ cl(ϕ) that ψ ∈ C0 ↔ π |= (ψ).

Base case: |ψ| = 1. Then ψ ∈ Prop. The claim follows from the definition of the

labeling of states in Q, i.e. that in our construction, Ci = {ψ ∈ cl(ϕ)|(Ci ∩ Prop)(Ci+1 ∩

Prop)(Ci+2 ∩ Prop) . . . |= ψ}.

Induction step: Presume the claim holds for subformulas ξ, η ∈ cl(ϕ). Then it holds for:

1. ψ = ¬ξ. The claim follows from the definition of the labeling of states in Q.

2. ψ = Xξ. From the definition of δ, Xξ ∈ Ci → ∀qi+1, σ : δ(qi, σ) = qi+1, ξ ∈ Ci+1.

Therefore, ψ ∈ Ci ↔ π |= (ψ).

3. ψ = ξ ∧ η. The claim follows from the definition of the labeling of states in Q.

4. ψ = ξ ∨ η. The claim follows from 1, 3, and DeMorgan’s law.

5. ψ = ξ U η. If π |= ψ then there is some i ≥ 0 such that πi, πi+1, . . . |= η and
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∀ j : 0 ≤ j < i, π j, π j+1, . . . |= ξ. From our induction hypothesis, we have that

η ∈ Ci and ξ ∈ C j. By induction we have that ξ U η ∈ Ci,Ci−1, . . . ,C0. From our

construction, if (ξ U η) ∈ C0 then either ∀i ≥ 0 : ξ,X(ξ U η) ∈ Ci and η < Ci or

∃i ≥ 0 : η ∈ Ci and ∀ j : 0 ≤ j ≤ i, ξ,X(ξ U η) ∈ Ci. Since we know that ρ, the

run of π in Aϕ, is accepting, by the definition of F, only the latter case is possible.

Therefore, ψ ∈ C0 ↔ π |= (ψ).

6. ψ = ξRη. The claim follows from 1, 5, and the definition of R.

Only if: π |= (ϕ)→ π ∈ Lω(Aϕ)

Since q0 is defined by the cover of ϕ, there must be a state q ∈ q0 such that π0 |= q. In

general, we want to show that ∀i : i ≥ 0, πi |= qi, so we show how to choose πi+1. We know

there is a set Ci+1 ∈ δ(Ci, πi) such that πi, πi+1, . . . |= Ci,Ci+1, . . . since for all i:

• The atomic propositions that are true in π0 are true in the state qi of our run: πi ∈ Ci.

• For every formula of the form Xψ in Ci, we know that πi, πi+1, . . . |= Xψ, which

means πi+1, πi+2, . . . |= ψ, so ψ ∈ Ci+1.

• For every formula of the form ξU ψ in Ci, we know that πi, πi+1, . . . |= ξU ψ, which

means either πi, πi+1, . . . |= ψ, so ψ ∈ Ci, or πi, πi+1, . . . |= ξ ∧X(ξU ψ), so ξ ∈ Ci and

(ξ U ψ) ∈ Ci+1.

Furthermore, we know from the definition of F that for all subformulas of the form (ξU ψ) ∈

cl(ϕ), there is a set Fξ U ψ ∈ F containing all Ci : (ψ ∈ Ci)∨ ((ξU ψ) < Ci). We can choose

an accepting run as follows. Let U be the set ofU-subformulas not fulfilled in the current

state, Ci. Then ∀ξ, ψ : ((ξ U ψ) ∈ Ci) ∧ ψ < Ci, (X(ξ U ψ) ∈ Ci). For each such formula in

U in succession, we choose the shortest path from the current state to a state that contains ψ,

thus fulfilling the claim. We know there must exist such a path for eachU-subformula by

the construction of δ such that Xψ ∈ Ci → ψ ∈ Ci+1, and by the definition of F. Note that
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if some state Ci < Fξ U ψ, then ((ξU ψ) ∈ Ci) and (ψ < Ci) and, also, πi, πi+1, . . . |= (ξU ψ)

but πi, πi+1, . . . 6|= ψ. This creates a contradiction since we know that π |= (ϕ), by defini-

tion of Büchi acceptance, necessitates that π passes through a state in each set Fξ U ψ ∈ F

infinitely often. �

This theorem reduces LTL satisfiability checking to automata-theoretic nonemptiness

checking, as ϕ is satisfiable iff models(ϕ) , ∅ iff Lω(Aϕ) , ∅.9

2.5 Safety versus Liveness

There are two fundamental properties we can prove about programs: safety and liveness.

These categories were originally introduced by Leslie Lamport [139]. They are also re-

ferred to as invariance and eventuality, respectively [83]. Distinguishing between the two

types of properties is helpful because different techniques can be used to prove each type

[140, 141]. For example, taking advantage of the structure of safety properties can be used

to optimize assume-guarantee reasoning [141]. Showing a safety property holds involves an

invariance argument while liveness properties require demonstration of well-foundedness.

Here, we adapt the formal definitions of safety and liveness from Alpern and Schneider

[142]. Kindler [143] provides a complete survey of historical (and sometimes conflicting)

definitions.

Intuition 1

A Safety Property expresses the sentiment that “something bad never happens.”

In general, safety properties take the form �good, where good is a temporal logic for-

mula describing a good system behavior. In other words, the system always stays in some

allowed region of the state space. Recall that LTL properties are interpreted over computa-

tions, which are infinite words over the alphabet Σ = 2Prop where Prop is the set of atomic

9For another version of this proof with several illustrative examples, see [28].
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propositions in the formula. Intuitively, “something bad” only needs to happen once in a

computation for the property to be violated; what happens after that in the infinite com-

putation does not affect the outcome of the model-checking step. Therefore, if a safety

property ϕ is violated, there must be some finite prefix α = π0, π1, . . . πi of the computation

π in which this violation occurs. Then, for any infinite computation β over the alphabet Σ,

the concatenation of computations α · β cannot satisfy ϕ.

Safety properties were first formally defined in [144]. For property ϕ, infinite compu-

tation π = π0, π1, . . ., and alphabet Σ = 2Prop, we define safety as follows:

(∀π, π ∈ Σω : π |= ϕ↔ (∀i, 0 ≤ i : (∃β, β ∈ Σω : π0...i · β |= ϕ))),

where · is the concatenation operator and Σω denotes the set of infinite words (or ω-words)

over Σ.

Restated, ϕ is a safety property satisfied by computation π if and only if for all lengths

of finite prefixes of π, that finite prefix concatenated with some infinite computation models

ϕ. This is the contrapositive of the statement that if π 6|= ϕ then there is some finite prefix

of π in which something bad happens that cannot be extended into an infinite computation

that will satisfy ϕ.

We can also define a safety property in terms of language closure [142]. In Chapter

2.4 we translate the LTL formula into a Büchi automaton. The closure of a reduced Büchi

automaton is obtained by making all states accepting states. (A Büchi automaton is reduced

if there is a path to an accepting state from every state in the automaton; i.e. there are no

dead end “trap” states.) A closure of an automaton representing a safety property must

accept all prefixes of the language defined by that property.

Lemma 2.2

A reduced Büchi automaton Aϕ specifies a safety property ϕ if and only if L (Aϕ) =
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L (cl(Aϕ)).10

Examples of safety properties include invariance, partial correctness, mutual exclusion,

ordering (i.e. first-come-first-serve), deadlock freedom, and reachability. Safety properties

are also called invariance properties because they describe predicates that do not change

under a set of transformations. Proving partial correctness of a sequential program provides

assurance that the program never halts with a wrong answer. Mutual exclusion prohibits

the simultaneous use of a common resource by multiple processes (i.e. two processes

cannot write to the same file at the same time). Ordering of events, such as first-come-first-

served, forbids service out of the established order. Freedom from deadlock ensures that

the system will never reach a standstill from which no progress can be made, such as when

all processes are simultaneously locked out of, and waiting on, a common resource. In a

sense, reachability is the dual of safety as it is an assurance that a certain program state can

be reached (i.e. ¬(�¬good)).

Intuition 2

A Liveness Property expresses the sentiment that “something good must eventually hap-

pen.”

Typically, liveness properties express^good, where good once again is a temporal logic

formula describing a good system behavior. Whereas safety properties reason about reach-

ing specific states, liveness properties reason about control flow between states. Liveness

is loosely defined as a program’s ability to execute in a timely manner.

Let Σ f inite be the set of all finite computations over Σ. For property ϕ, we define liveness

as follows:

(∀α, α ∈ Σ f inite : (∃β, β ∈ Σω : α · β |= ϕ)),

10Note that Sistla showed that the problem of determining whether an LTL formula, or the nondeterministic
Büchi automaton representing it, express a safety property is PSPACE-complete [145].
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where · is the concatenation operator.

The formal definition of liveness is basically defined oppositely from safety. In short,

there is no finite prefix over Σ that cannot be extended into an infinite computation that sat-

isfies ϕ. Intuitively, this corresponds to the notion that the “something good” that satisfies

the property can still happen after any finite execution.

As with safety, we can also frame the definition of liveness in terms of language closure

of reduced Büchi automata. If Aϕ is a reduced Büchi automaton then a computation is

not in cl(Aϕ) if and only if it attempts to traverse a transition that is not defined in the

transition relation δ for Aϕ. Furthermore, since every finite prefix of liveness property ϕ

can be extended into an infinite computation that satisfies ϕ, then the closure of Aϕ actually

accepts all infinite words over the alphabet Σ.

Lemma 2.3

A reduced Büchi automaton Aϕ specifies a liveness property ϕ if and only if L (cl(Aϕ)) =

Σω.

Liveness properties are also called eventualities since they promise that some event will

happen, eventually. In other words, the system will eventually progress through “useful”

states, even if some stuttering is allowed. Termination is a liveness property; it asserts

the program will eventually halt instead of hanging forever. Other examples of liveness

properties include total correctness, accessibility/absence of starvation, fairness (also called

justice), compassion (also called strong fairness), and livelock freedom. Total correctness

extends partial correctness with termination; it states that not only must the program not

terminate in a bad state, the program must terminate in a good state. Starvation occurs

when a process is unable to make progress due to insufficient access to shared resources;

it is assuaged by assuring regular accessibility to necessary resources. Fairness guarantees

each process the chance to make progress while compassion extends fairness to include the
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existence of sets of cyclically recurring system states. A fair scheduler executes a process

infinitely often while a compassionate scheduler ensures that a process that is enabled in-

finitely often is executed infinitely often. Freedom from livelock means that the system

will never reach a live standstill, where the processes in question cannot make progress yet

are not blocked but thrashing indefinitely. An intuitive example of livelock occurs when

two people try to pass each other in the hallway yet repeatedly step to the same side of

the hallway in an effort to let the other person pass. Both people are still walking but they

are now oscillating side-to-side instead of making progress forward. Common examples

of liveness properties include: “every request will eventually be granted,” “a message will

eventually reach its destination,” and “a process will eventually enter its critical section.”

Model checking of safety properties is simpler than model checking of liveness prop-

erties. Due to the temporal structure of liveness properties, they must be witnessed by an

infinite counterexample in the shape of a lasso. That is, a counterexample with a finite pre-

fix leading to a bad cycle that represents an unending run of the system in which the liveness

property is never fulfilled. Safety properties, on the other hand, are always violated within

the finite prefix, eliminating the need to compute the remainder of the counterexample cor-

responding to the loop at the end of the lasso. Intuitively, a safety property is violated the

first instance the system enters some prohibited state. Though we provide the full model-

checking algorithm for all possible LTL specifications in Chapter 2.10, a simpler check

using symbolic reachability analysis can be used instead to check only safety properties

[141].

With only one exception, safety and liveness properties are disjoint. The only property

that is both a safety and a liveness property is the property true, which describes all possible

behaviors, or the words in the set (2Prop)ω.11 The proof of this statement follows from

11Noteωwas originally defined by Cantor to be the lowest transfinite ordinal number so (2Prop)ω designates
the set of all infinite words over the alphabet Σ = 2Prop.
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Figure 2.5 : A counterexample trace takes the form of an accepting lasso. Again, the start
state is designated by an incoming, unlabeled arrow not originating at any vertex. Here,
F1 . . . F4 represent final states satisfying four acceptance conditions.

the definitions of safety and liveness above, specifically L (true) = L (cl(true)) = Σω.

Remarkably, while every LTL formula is not strictly either a safety or a liveness property,

Alpern and Schneider [146] proved that every LTL formula is a combination of a safety

and a liveness property.

2.5.1 Specifying the Property as an Automaton

Instead of using a temporal logic to describe a behavioral property, we can use an automaton

directly. Many model checkers, like Spin, NuSMV, and CadenceSMV, will accept specifi-

cations in either format and some, like Lucent’s FormalCheck [147], deal exclusively with

automata inputs. However, complementing a Büchi automaton is quite difficult (and likely

involves the expensive step of determinization) whereas complementing an LTL formula

can be done in constant time by simply preceding the formula with a negation symbol. Cur-

rently, the best time complexity for complementation of Büchi automata is 2O(n log n) [148]

but this is still an open area of research [149, 150, 151]. Advantages of this method include

the ability to directly and efficiently construct the automaton Aϕ rather than relying on an

LTL-to-Büchi translation while disadvantages include the unintuitiveness of representing a

behavior specification as an automaton.
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2.6 LTL→ Symbolic GBA

Given an LTL specification ϕ, the model checker creates a generalized Büchi automaton

A¬ϕ that recognizes precisely the executions that do not satisfy ϕ and is destined for com-

position with the model under verification. The size of A¬ϕ is O(2|ϕ|) in the worse case,

which provides motivation for utilizing a succinct, symbolic representation instead of ex-

plicitly constructing the automaton. Symbolic model checkers, such as NuSMV [15], Ca-

denceSMV [9], SAL-SMC [73], and VIS [63], represent and analyze the system model and

specifications symbolically. In the symbolic representation of automata, states are viewed

as truth assignments to Boolean state variables and the transition relation is defined as a

conjunction of Boolean constraints on pairs of current and next states [64]. All symbolic

model checkers use the LTL-to-symbolic automaton translation described in [65], some

with minor optimizations. Essentially, these tools support LTL model checking via the

symbolic translation of LTL to a fair transition system that can be checked for nonempti-

ness. Recall that fairness constraints specify sets of states that must occur infinitely often

in any path. They are necessary to ensure that the subformula ψ holds in some time step for

specifications of the form ξ U ψ and ^ψ. We enumerate the steps of the standard LTL-to-

symbolic automaton algorithm [65], in detail, below. Bolded steps are those that produce

output that appears in the symbolic automaton.

Input: An LTL formula f .

1. Negate f and declare the set AP f of atomic propositions of f .

2. Build el list, the list of elementary formulas in f :

• el(p) = {p} if p ∈ AP.

• el(¬g) = el(g).

• el(g ∨ h) = el(g) ∪ el(h).
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• el(g ∧ h) = el(g) ∪ el(h).

• el(Xg) = {Xg} ∪ el(g).

• el(gU h) = {X(gU h)} ∪ el(g) ∪ el(h).

• el(g R h) = {X(g R h)} ∪ el(g) ∪ el(h).

• el(�g) = {X(�g)} ∪ el(g).

• el(^g) = {X(^g)} ∪ el(g).

3. Declare a new variable ELXg for each formula Xg in the list el list.

4. Define the function sat(g), which associates each elementary subformula g of f with

each state that satisfies g:

• sat(g) = {q|g ∈ q} where g ∈ el( f ), q ∈ Q.

• sat(¬g) = {q|q < sat(g)}.

• sat(g ∨ h) = sat(g) ∪ sat(h).

• sat(g ∧ h) = sat(g) ∩ sat(h).

• sat(gU h) = sat(h) ∪ (sat(g) ∩ sat(X(gU h))).

• sat(g R h) = sat(h) ∩ (sat(g) ∪ sat(X(g R h))).

• sat(�g) = sat(g) ∩ sat(X(�g)).

• sat(^g) = sat(g) ∪ sat(X(^g)).

5. Add fairness constraints to the SMV input model:

{sat(¬(gU h) ∨ h)|gU h occurs in f }.

{sat(¬(^ g) ∨ g)|^ g occurs in f }.
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Note that we do not add a fairness constraint for subformulas of the form g R h.

While R is the dual of U, it is acceptable if h is true infinitely often and g is never

true.

6. Construct the characteristic function S h of sat(h). For each subformula h in ¬ f :

S h = p if p is an atomic proposition.

S h = ELh if h is elementary formula Xg in el list.

S h =!S g if h = ¬g

S h = S g1|S g2 if h = g1 ∨ g2

S h = S g1&S g2 if h = g1 ∧ g2

S h = S g2|(S g1&S X(g1 U g2)) if h = g1 U g2

S h = S g2&(S g1|S X(g1 R g2)) if h = g1 R g2

S h = S g&S X(�g) if h = �g

S h = S g|S X(^g) if h = ^g

7. For each subformula rooted at an X, define a TRANS statement of the form:

• TRANS ( S X g = next(S g) )

8. Print the SMV program. (Since we type code in ASCII text, the operators � and ^

are represented in SMV syntax by their alphabetic character equivalents, G and F ,

respectively.)

MODULE main

VAR /*declare a boolean variable for each atomic proposition in f*/

a: boolean;
b: boolean;

/*and declare a new variable EL_X_g for each formula (X g) in el_list*/
EL_X_g: boolean;
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DEFINE /*for each S_h in the characteristic function, put a line here*/
S_a := a;
S_b := b;
S_g1 := ...
S_g2 := ...

TRANS /*for each (X g) in el_list, generate a line here*/
( S_X_g1 = next(S_g1) ) &
( S_X_g2 = next(S_g2) ) &

...
( S_X_gn = next(S_gn) )

/*for each (g U h) and (F g) in the parse tree,
generate lines like this:*/

FAIRNESS ! S_gUh | S_h
FAIRNESS ! S_Fg | S_g

/*end with a SPEC statement*/
SPEC !(S_f & EG true)

Proof of the correctness of this LTL-to-symbolic-automaton construction is given in

[65].

2.7 Combining the System and Property Representations

We directly construct the product AM, ¬ϕ of the system model automaton M and the automa-

ton representing the complemented specification A¬ϕ. This construction logically follows

from the realization that the product of these two automata constitutes the intersection

of the languages L (M) and L (A¬ϕ) [152]. Recall from Chapter 2.2.2 that Büchi au-

tomata are automata that accept exactly the class of ω-regular languages. Furthermore, the

class of ω-regular languages corresponds exactly to the languages that can be described

by ω-regular expressions and is closed under the operations of union, intersection, and

complementation [153]. Therefore, we can construct a Büchi automaton AM, ¬ϕ such that

L (AM, ¬ϕ) = L (M) ∩L (A¬ϕ) since L (AM, ¬ϕ) is an ω-regular language.

Intuitively, AM, ¬ϕ simulates running the two multiplicand automata in parallel, also

called the synchronous parallel composition of M and A¬ϕ. Executing these two automata
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simultaneously allows us to use A¬ϕ to continuously monitor the behavior of M and judge

whether M satisfies the desired property ϕ at all times.12

The states of AM, ¬ϕ are pairs of states, one each from M and A¬ϕ, plus a track label t ∈

{0, 1}. (For simplicity, we call a state in M qM and a state in A¬ϕ qϕ.) A run of AM, ¬ϕ starts

in the pair of the two start states in track 0: (q0M, q0ϕ, 0). Upon reading a character σ ∈ Σ,

AM, ¬ϕ transitions from the current state, q = (qM, qϕ, t), to a next state, q′ = (q′M, q
′
ϕ, t),

wherever M transitions from the M-component of q, qM, to the M-component of q′, q′M,

upon reading σ and A¬ϕ also transitions from its associated component, qϕ, to q′ϕ upon

reading σ. The value of t remains the same unless either t = 0 and qM ∈ FM or t = 1 and

qϕ ∈ Fϕ, in which case the t-bit flips. In essence, the two tracks ensure AM, ¬ϕ starts in track

0, passes through a final state in M, switches to track 1, passes through a final state in A¬ϕ,

switches back to track 0, and repeats the pattern. We assign the set of final states in AM, ¬ϕ

to essentially match those of M since the path of any run only returns to track 0 if it has

previously passed through an accepting state of M in track 0 and an accepting state of A¬ϕ

in track 1. Since the accepting condition for a Büchi automaton necessitates visiting the set

of final states infinitely often, visiting infinitely often a state whose M-component is in FM

while in track 0 suffices. This construction is necessarily more complex than the straight

Cartesian product [152] of the two automata, M × A¬ϕ, since we must allow for runs that

pass infinitely often through final states in both M and A¬ϕ, but not necessarily at the same

time. (For an illustrative example, see [128].) Note that since q0ϕ is defined as the state(s)

labeled by ¬ϕ, the initial state(s) our product automaton AM, ¬ϕ must also be labeled by ¬ϕ.

We presume that the alphabets of both automata are the same, a reasonable assumption

considering that the formula ¬ϕ describes a behavior of the system M. However, our con-

12Systems can also be composed asynchronously, where δ is defined such that it is possible for either M
or ϕ to progress while the other does not transition and the values of any system variable specific to the non-
transitioning system are preserved. However, this type of composition does not further the model-checking
algorithm presented here.
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struction is unchanged by defining the alphabet Σ of AM, ¬ϕ to be the union of the alphabets

of M and A¬ϕ if those alphabets differ.

Formally, we define AM, ¬ϕ as follows.

Definition 6

Let M = (QM,Σ, δM, q0M, FM) and A¬ϕ = (Qϕ,Σ, δϕ, q0ϕ, Fϕ). The intersection automaton

AM, ¬ϕ with the property that L (AM, ¬ϕ) = L (M) ∩ L (A¬ϕ) is the automaton defined by

the quintuple AM, ¬ϕ = (Q̂,Σ, δ̂, (q0M, q0ϕ, 0), F̂) where:

• State set Q̂ = QM × Qϕ × {0, 1} consists of triples (qiM, q jϕ, t).

• Σ is the shared alphabet.

• Transition relation δ̂ is defined such that AM, ¬ϕ is in state (qiM, q jϕ, t) whenever M is

in state qiM and A¬ϕ is in state q jϕ. For any σ ∈ Σ,

δ̂((qiM, q jϕ, t), σ) = (qk M, qlϕ, t),

whenever
δM(qiM, σ) = qk M

and
δϕ(q jϕ, σ) = qlϕ

unless
t = 0 and qiM ∈ FM,

or
t = 1 and q jϕ ∈ Fϕ

in which case
δ̂((qiM, q jϕ, t), σ) = (qk M, qlϕ, t).

• The initial state is (q0M, q0ϕ, 0).

• The set of final states F̂ is the set of all states (qiM, q jϕ, 0) such that qiM ∈ FM and

q jϕ ∈ Qϕ.
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Theorem 2.2

Büchi automata are closed under complementation.

Let A = (Q,Σ, δ, q0, F) be a Büchi automaton that accepts the language L. The construc-

tion of the Büchi automaton A that accepts the complement language L is rather involved. It

does not suffice to simply complement the accepting set F (i.e. let A′ = (Q,Σ, δ, q0,Q−F))

because a run not passing through any state in F infinitely often is different from a run

passing through some state in Q − F infinitely often. For example, an accepting run of A

on the word w might pass through both states in F and in Q − F infinitely often, so both

A and A′ would accept w. Thus, L (A′) , Σω −L (A). The complex construction proving

Theorem 2.2 is given in [126], which yields a doubly exponential construction for A and

in [104], which reduces the construction to singly exponential with a quadratic exponent.

Specifically, for Büchi automaton A, over the alphabet Σ, there is a Büchi automaton A with

2O(|Q| log |Q|) states such that L (A) = Σω −L (A) [148]. Michel proved that this is an optimal

bound [154].

As an important aside, since Büchi automata are not closed under determinization and

nondeterministic Büchi automata are more expressive than deterministic Büchi automata,

the complement automaton A produced by these algorithms for some deterministic Büchi

automaton A may be a nondeterministic Büchi automaton that cannot be determinized. Effi-

cient methods for constructing and reasoning about complemented Büchi automata remain

an area of interest. For example, we can check A for nonuniversality (i.e. L (A) , Σω) in

polynomial space by constructing A on the fly and checking for nonemptiness [128].

Theorem 2.3

L (AM, ¬ϕ) is an ω-regular language and AM, ¬ϕ is a Büchi automaton.

Proof of Theorem 2.3

Recall that LM = L (M) is an ω-regular language since it is the language accepted by
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a Büchi automaton and that Lϕ = L (A¬ϕ) is also an ω-regular language since ¬ϕ is an

LTL formula, which describes a (∗-free) ω-regular expression. We know that L (AM, ¬ϕ) =

LM ∩ Lϕ is an ω-regular language, and, therefore, that AM, ¬ϕ is a Büchi automaton because

ω-regular languages are closed under intersection. First, we offer proof of closure under

union; closure under intersection follows from closure under union and complementation.

By definition of ω-regular languages, there exist ω-regular expressions rM and rϕ that

describe the languages LM and Lϕ, respectively. That is, LM = L (rM) and Lϕ = L (rϕ).

By definition of ω-regular expressions, rM + rϕ is an ω-regular expression denoting the

language LM ∪ Lϕ, which demonstrates closure under union.

Closure under intersection now follows from DeMorgan’s Law:

LM ∩ Lϕ = LM ∪ Lϕ

By closure under complementation, LM and Lϕ are both ω-regular languages. By closure
under union, LM ∪ Lϕ is an ω-regular language. Again by closure under complementation,

LM ∪ Lϕ = LM ∩ Lϕ

is an ω-regular language. By definition of ω-regular languages, it follows that AM, ¬ϕ is a
Büchi automaton. �

Theorem 2.4

Let LM = L (M) and Lϕ = L (A¬ϕ). Given an infinite word w = w0,w1,w2, . . . ∈ Σ,

w ∈ LM ∩ Lϕ if and only if it is accepted by AM, ¬ϕ.

Proof of Theorem 2.4

If-direction: w ∈ LM ∩ Lϕ → w is accepted by AM, ¬ϕ.

An infinite word w is in the language LM ∩ Lϕ if w ∈ LM and w ∈ Lϕ. By definition,

w ∈ LM iff w represents an accepting execution of the Büchi automaton M. Symmetrically,
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w ∈ Lϕ iff w is accepted by the automaton A¬ϕ corresponding to the LTL formula ¬ϕ. Then

we know that δωM(q0M,w) transitions through some final state qiM ∈ FM infinitely often and

that δωϕ (q0ϕ,w) similarly transitions through some accepting state q f ϕ ∈ Fϕ infinitely often.

By definition of δ̂, AM, ¬ϕ is in state (qiM, q jϕ, t) for some t ∈ {0, 1} exclusively when M is

in state qiM and A¬ϕ is in state q jϕ upon reading the same word. That is, for any w, t,

δ̂ω((qiM, q jϕ, t),w) = (qk M, qlϕ, t),

whenever
δωM(qiM,w) = qk M

and
δωϕ (q jϕ,w) = qlϕ.

Since whenever qiM ∈ FM, (qiM, q jϕ, 0) ∈ F̂, and a state (qiM, q jϕ, 0) can only be reached

when δϕ(q0ϕ,w) loops through some final state q f ϕ ∈ Fϕ, w is accepted by AM, ¬ϕ.

Only-if direction: w is accepted by AM, ¬ϕ → w ∈ LM ∩ Lϕ.

By definition, an infinite word w is accepted by AM, ¬ϕ if the run over w in AM, ¬ϕ visits at

least one state in F̂ infinitely often. That is, δ̂ω((q0M, q0ϕ, 0),w) transitions infinitely often

through some state (qiM, q jϕ, 0) ∈ F̂. By construction, for any w, δ̂ω((q0M, q0ϕ, 0),w) =

(δωM(q0M,w), δωϕ (q0ϕ,w), 0). By definition of F̂, (qiM, q jϕ, 0) ∈ F̂ iff qiM ∈ FM and a run

of w in A¬ϕ loops through q f ϕ ∈ Fϕ. Therefore, δωM(q0M,w) transitions through qiM ∈

FM infinitely often and w ∈ LM. Symmetrically, δωϕ (q0ϕ,w) transitions through q f ϕ ∈ Fϕ

infinitely often and w ∈ Lϕ. Ergo, w ∈ LM ∩ Lϕ. �

The product automaton AM, ¬ϕ has size O(|M| × |A¬ϕ|) in the worst case. (Though the

product can be much smaller; in the best case, it has size 0 [55].) Due to this size blow-

up, representing the automaton as succinctly as possible becomes vital to palliate the state

explosion problem and ensure AM, ¬ϕ can be stored in computer memory. It is easy to see

that even small differences in the sizes of both M and A¬ϕ can have a significant impact on

our ability to store, and to reason about, AM, ¬ϕ.
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2.8 Checking for Counterexamples: Explicitly

Explicit model checkers, such as Spin, search the combined automaton AM, ¬ϕ via a nested

depth-first search algorithm [56]. The intuition behind this procedure is that the model

checker must first search for a path from a start state to an accepting state and then search

for a cycle from such an accepting state back to itself. Thus, the first search pauses when it

reaches an accepting state and starts the second search to try and find a cycle through this

state, resuming if the second search fails to find such a cycle.

The specific optimized nested depth-first search algorithm used in Spin and displayed

in Figure 2.6 is a variation on the standard algorithm [56], which implements optimizations

that both improve the performance of the search and ensure compatibility with partial order

reduction [57]. Correctness in combination with partial order reduction is accomplished by

guaranteeing that the second depth-first search always explores the same states that are

found in the first depth-first search. The algorithm in Figure 2.6 provides this guarantee

by terminating the second depth-first search whenever it reaches a target state that is on

the Stack from the first depth-first search, because reaching such a target state from the

state seeding the second depth-first search establishes the existence of a cycle. This cycle

passes from the seed state to the target state (on the path explored via the second depth-

first search), through the states on the Stack after the target state (explored via the first

depth-first search), and back to the seed state.

In any given state, Spin always executes the actions from the equivalent state of the

property automaton A¬ϕ (represented as a Promela never claim) before those from the

system M. Spin effectively combines the specification and system model on the fly in

this way, minimizing the size of the Statespace that is constructed, and analyzing the

possible combined never claim and model transitions using the optimized nested depth

first search in Figure 2.6.
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Optimized Nested Depth First Search (Compatible with Reduction) Used in Spin:

proc dfs(s)
if error(s) then report error fi
add {s,0} to Statespace
add s to Stack
for each (selected) successor t of s do

if {t,0} not in Statespace then dfs(t) fi
od
if accepting(s) then ndfs(s) fi
delete s from Stack

end
proc ndfs(s) /* the nested search */

add {s,1} to Statespace
for each (selected) successor t of s do

if {t,1} not in Statespace then ndfs(t) fi
else if t in Stack then report cycle fi

od
end

Figure 2.6 : Pseudocode representation of the NDFS algorithm from [57].

For model checking scalability, we must choose a representation of AM, ¬ϕ that mini-

mizes the storage memory requirement while maximizing the efficiency of the nonempti-

ness check. An alternative to the above method of explicit representation and search by

single states and transitions is to optimize this task by representing AM, ¬ϕ using BDDs.

2.9 Representing the Combined System and Property using BDDs

The basis for symbolic model checking is the realization that both the system model and

the specification property can be represented symbolically, using Boolean equations, rather

than explicitly, using automata. Furthermore, they can be manipulated efficiently using op-

erations over Binary Decision Diagrams (BDDs). Symbolic representation and manipula-

tion of the intermediate products of model checking leads to much more succinct structures

needing to be stored in computer memory, thereby directly combating the state explosion
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problem. Certainly there are pathological constructions of systems that do not benefit sub-

stantially from this space reduction, but symbolic model checking increases the scalability

of model checking for a great many common systems, especially those with regular struc-

ture such as hardware circuits [78, 68].

In this section, we will demonstrate how the automaton AM, ¬ϕ can easily grow to a

size that cannot be practically represented in memory and present the most popular alterna-

tive representation, which uses BDDs to mitigate this problem. The technique of symbolic

model checking was introduced by McMillan [8] in 1992 specifically as a response to the

state explosion problem. The power of symbolic model checking derives from using equa-

tions describing sets of states and sets of transitions to implicitly define the state space,

thereby using significantly less memory than explicit representations that may enumerate

the entire state space. Most symbolic model checkers utilize BDDs to accomplish this task,

though other approaches are possible [155].

Boolean equations of the sort used to describe the transition systems plied by sym-

bolic model checking are commonly represented in a variety of ways, such as truth tables

and Binary Decision Trees (BDT), which are exponential in the size of the formulas they

represent.

Definition 7

A Binary Decision Tree (BDT) is a rooted, directed, acyclic graph (DAG) with vertices

labeled by the n variables of the corresponding Boolean formula. Each variable node has

exactly two children representing the two possible assignments to that variable, 0 and 1,

labeled low and high, respectively. (Note that, except for the root, each node has exactly

one parent.) A path through the BDT represents a valuation of the represented function

given an assignment of values to the n variables; it starts at the root, follows the outgoing

edge matching the assignment to the variable in the current vertex, and terminates in a

vertex labeled either 0 or 1, corresponding to the value of the formula for that variable
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valuation. The BDT representing a formula over n variables has 2n − 1 variable vertices

plus 2n terminal vertices in {0, 1}, for a total size of 2n+1 − 1 nodes.

A BDD is a refinement of a BDT. While in the worst case, a BDD is only roughly half

the size13 of its equivalent BDT, usually there is more significant improvement gained by

the following construction.

Definition 8

A Binary Decision Diagram (BDD) is a rooted, directed, acyclic graph (DAG) with in-

ternal vertices labeled by some sufficient subset of the n variables of the corresponding

Boolean formula and exactly two terminal vertices, labeled 0 and 1. Each variable node

has exactly two children representing the two possible assignments to that variable, 0 and

1, labeled low and high, respectively. (Note that, except for the root, each node may have

any number of parents.) A path through the BDD represents a valuation of the represented

function given an assignment of values to the n variables; it starts at the root, follows the

outgoing edge matching the assignment to the variable in the current vertex, and terminates

in the vertex corresponding to the value of the formula for that variable valuation.

A BDD is considered ordered if it follows a given total order of variables from root to

leaves. Note that not all variables may appear in the tree or along any path in the tree; a

variable only appears along a path if its value influences the value of the formula, given the

assignments to previous variables along the path. If we are reasoning over multiple ordered

BDDs (OBDDs), they are presumed to all follow the same variable ordering. A BDD is

reduced if it contains no vertex v such that low(v) = high(v) and no pair of vertices v1 and v2

such that the subgraphs rooted by v1 and v2 are isomorphic. That is, if there is a one-to-one

function f such that for any vertex v′1 in the subgraph rooted at v1, for some vertex v′2 in

the subgraph rooted at v2, f (v′1) = v′2 implies that either v′1 and v′2 are both terminal vertices

13Eliminating duplicate terminal nodes from a BDT of size 2n+1−1 with 2n terminal vertices leaves a BDD
of size 2n + 1 nodes.
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with the same value, or v′1 and v′2 are both non-terminal vertices with the same variable

label and the property that f (low(v′1)) = low(v′2) and f (high(v′1)) = high(v′2), then either v1

or v2 will be eliminated. Note that each path realizes a unique set of variable assignments;

each variable valuation corresponds to exactly one path. Furthermore, every vertex in the

graph lies along at least one path; no part of the graph is unreachable.

In practice, any non-reduced BDD can be easily reduced by applying two reduction

rules. The redundancy elimination rule removes any non-terminal node v1 where low(v1) =

high(v1) = v2 and connects all incoming edges of v1 directly to v2 instead. The isomorphism

elimination rule removes vertex v1 wherever there exists a vertex v2 such that var(v1) =

var(v2), low(v1) = low(v2), and high(v1) = high(v2) and redirects all incoming edges of v1

directly to v2. (We use var(v) to denote the variable labeling vertex v.) Note that v1 and

v2 may be either terminal or non-terminal vertices; this rule eliminates duplicate terminals

as well as isomorphic subgraphs. A non-reduced BDD can be reduced in a single pass of

the tree by careful application of these two rules in a bottom-up fashion. An example of

reducing a Binary Decision Tree into a BDD is given in Figure 2.7. All three subfigures

represent the formula x1 ∨ x2 ∨ x3 with varying degrees of succinctness as each of the two

reduction rules is applied.

(a) Binary Decision Tree (b) isomorphism elimina-
tion rule

(c) redundancy
elimination rule

Figure 2.7 : Conversion of a Binary Decision Tree for x1 ∨ x2 ∨ x3 into a Binary Decision
Diagram.
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When BDDs are both reduced and ordered (also called ROBDDs), they have many

highly desirable properties. In this dissertation, we consider all BDDs to be both reduced

and ordered; the algorithms used for symbolic model checking, and for efficient BDD

manipulation in general, all maintain these properties. Reduced ordered BDDs are closed

under the class of symbolic operations, as outlined in Chapter 2.9.2. These include Apply

and Satisfy-one, which form the basis for the symbolic model-checking algorithm.

Using BDDs to reason about Boolean formulas representing the state space offers many

advantages over explicit automata representations:

• Complexity (both time and space): BDDs provide reasonably small representations

for a large class of the most interesting, and most commonly-encountered, Boolean

functions. For example, all symmetric functions, including the popular even and odd

parity functions, are easily represented by BDDs where the number of vertices grows

at most with the square of the number of arguments to the function. Moreover, since

our BDDs are reduced and ordered, they have the property of minimality. This means

if B is a BDD representing a function f , then for every BDD B′ that also represents

f and has the same variable ordering as B, size(B) ≤ size(B′). Even better, we can

frequently avoid enumerating the entire state space. Specifically, we can express

tasks in several problem domains entirely in terms of graph algorithms over BDDs,

describe automata in terms of sets of states and transitions, or use other techniques

along those lines to express only relevant portions of the state space. Since all of

the algorithms used for symbolic analysis of BDDs have complexities polynomial in

the sizes of the input BDDs, the total computation remains tractable as long as the

sizes of the input BDDs are reasonable. The sum of these time-and-space advantages

allows us to use BDDs for solving problems that may scale beyond the limits of more

traditional techniques such as case analysis or combinatorial search.
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• Canonicity: There is a unique, canonical BDD representation for every Boolean

function, given a total variable ordering. This property yields very simple algorithms

for the most common BDD operations. Testing BDDs for equivalence just involves

testing whether their graphs match exactly. Testing for satisfiability reduces to com-

paring the BDD graph to that of the constant function 0. Similarly, a function is a

tautology iff its BDD is the constant function 1. Testing whether a function is in-

dependent of a variable x involves a simple check of whether its BDD contains any

vertices labeled by x. Note that this is an important advantage over explicit automata

representations since there is no canonical automaton representation for any class of

automata.

• Efficiency: Besides the benefits that directly follow from canonicity, BDD represen-

tation enables efficient algorithms for many basic operations, including intersection,

complementation, comparison, subtraction, projection, and testing for implication.

The time complexity of any single operation is bounded by the product of the graph

sizes of the functions being operated on or, for single-BDD operations like comple-

mentation, proportional to the size of the single function graph. In other words, the

performance of directly manipulating BDDs in a sequence of operations degrades

slowly, if at all.

• Simplicity: The BDD data structure and the set of algorithms for manipulating

BDDs are conceptually and implementationally simple.

• Generality: BDDs can be used for reasoning about all kinds of finite systems, ba-

sically any problem that can be stated in terms of Boolean functions. They are not

tied to any particular family of automata; they are just as useful for LTL symbolic

model checking as they are for the extensions of LTL described in Chapter 2.2.2, for

example.
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The notion of using Binary Decision Diagrams to reason about Boolean functions was

first introduced by Lee in 1959 [156] and later popularized by Akers who evinced the utility

of BDDs for reasoning about large digital systems [157]. Fortune, Hopcroft, and Schmidt

[158] restricted the ordering of the decision variables in the vertices of the graph, creating

the canonical form of Ordered Binary Decision Diagrams (OBDDs) (though they called

them B-schemes), noting the significance of variable ordering on graph size, and show-

ing the ease of testing for functional equivalence. Bryant, who coined the term OBDDs,

ameliorated ordered BDDs to symbolic analysis by demonstrating efficient algorithms for

combining two functions with a binary operation and composing two functions [159, 160].

2.9.1 Representing Automata Using BDDs

Recall that AM, ¬ϕ is a Büchi Automaton with finite set of states Q, defined by assignments

to the variables in the alphabet Σ, and transition relation δ : Q × Σ × Q. We consider state

qi ∈ Q as a tuple 〈qi, σ0, σ1, . . .〉 containing the name of the state and the assignments to

each of the system variables, in order, in that state. In this dissertation, we presume that

the set of system variables consists of Boolean-valued atomic propositions, which can each

be represented by a single bit. However, this representation is easily extended to other data

types by utilizing more bits to represent each system variable. For example, an integer

variable with a range of [0, 255] would be represented using 8 bits. (Unbounded variables

cannot be encoded in this fashion as they cause the representation of AM, ¬ϕ to have an infi-

nite number of states and thereby to be immune to the model-checking algorithm presented

here. Infinite state model checking requires the use of alternative techniques, e.g. [161].)

Choosing a Boolean encoding for an automaton is a bit of an art; there are several encoding

variations from which to choose. When reasoning about a single automaton, for instance,

there may be an advantage to encoding the state numbers in the representation along with

the values of the variables in each state. For example, if our system model has 7 states with
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5 system variables we need 4 bits to represent this range of state labels. The Boolean tuple

representation of a state labeled “State 6” where all 5 system variables are false, would be

〈011000000〉. (The first 4 bits are the binary representation of the label 6 and the last 5 bits

give the 5 false values of the system variables.) In practice, the state label is optional and

can be included or not in the Boolean tuple for optimization purposes. This sort of encod-

ing with state labels is not advantageous when reasoning about combinations of automata,

as in symbolic model checking, as the state labels become meaningless. Also, we would

rather avoid this kind of explicit enumeration of the states in the BDD representation since

this does not offer a space-saving advantage over explicit-state model checking.

We represent symbolic automata using BDDs by encoding the transition relations di-

rectly. Basically, a transition is a pair of states: an origin state and a terminal state. A simple

way to represent a transition from state qi to state qi+1 is via the tuple 〈qi, qi+1〉, which is

encoded using twice the number of bits as a single state. For instance, we can represent

a transition from State 6 to State 7 in an example automaton with |Σ| = 5, presuming a

specific variable ordering, as 〈0000001000〉. (The first 5 bits give the 5 false values of the

system variables in State 6; the next 5 bits represent the values of the system variables in

State 7, with the value of the second variable changed to True.)

Our BDD is constructed using 2|Σ| variables: two copies of each variable represent

its value in the originating state and in the target state. The variables σ1, σ2, . . . , σn rep-

resent the values of the atomic propositions in the current state and the primed variables

σ′1, σ
′
2, . . . , σ

′
n represent the values of the atomic propositions in the next state. Finding

an optimal BDD variable ordering is NP-complete and, for any constant c > 1, it is NP-

hard to compute a variable ordering to make a BDD at most c times larger than optimal

[162]. Though finding an optimal variable ordering is a tall order, a good rule of thumb

is to group the most closely-related variables together in the ordering and some order in-

volving interleaving the current and next time variants of the variable set together (as in
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σ1, σ
′
1, σ2, σ

′
2, . . . , σn, σ

′
n) has been shown to have some nice advantages for model check-

ing [28].

Alternative encodings include breaking a larger BDD representation into combinations

of smaller BDDs to take advantage of natural logical separations and minimize the size

of intermediate constructions [160]. Variations on the basic BDD structure can also be

helpful. For example, shared BDDs, or BDDs with multiple root nodes, one for each

function represented, save memory by overlapping BDD representations and adding a pair

of hash tables for bookkeeping [163]. Oppositely, BDDs with expanded sets of terminal

nodes (i.e. terminals other than 0 and 1), such as Multi-Terminal BDDs, offer unique

advantages, especially for extensions of model checking that deal with uncertainty [164,

165]. Examining memory-saving refinements on the basic BDD structure that sustain or

enhance the efficient manipulation of automata by reasoning over sets of states and sets of

transitions is an ongoing area of research.

The Impact of Variable Ordering

The first decision we make when forming a BDD is the variable ordering. This is also the

most important decision since the size of the graph representing any particular function may

be highly sensitive to the chosen variable ordering. Many common functions, such as inte-

ger addition, have BDD representations that are linear for the best variable orderings and

exponential for the worst. Unfortunately, computing an optimal ordering is an NP-complete

problem. Even if we take the time to compute the optimal ordering, not all functions have

reasonably-sized representations. For some systems, even a reasonably-sized BDD repre-

sentation is too large to reason about practically, and for others, the BDD representation

will grow exponentially with the size of the input function regardless of variable ordering

[159]. Therefore, the best course we can take is to utilize a set of comparatively simple

heuristics to choose an adequate ordering, avoiding orderings that would cause the BDD
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to grow exponentially whenever possible. A classic example of a function with both lin-

ear and exponential BDD representations, depending on variable ordering, is displayed in

Figure 2.8.

(a) variable order = {x1, x2, x3, y1, y2, y3} (b) variable order = {x1, y1, x2, y2, x3, y3}

Figure 2.8 : BDDs for the function (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3).

2.9.2 BDD Operations

We introduce the algorithms underlying the symbolic model-checking procedure, as de-

fined by Bryant [159] and reviewed by Andersen [166]. The full model-checking algorithm

presented in Chapter 2.10 builds upon these basic operations.

If ϕ is purely propositional (i.e. contains no temporal operators) then we can easily

construct a (reduced) BDD directly from ¬ϕ using a straightforward algorithm like Build

(shown in Figure 2.9), which simply loops through the variable ordering, recursively con-

structing each variable’s low and high subtrees14 [166]. Otherwise, we translate ¬ϕ into

14Unfortunately, this simple algorithm requires exponential (2n) time.
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algorithm BUILD(¬ϕ : propositional logic f ormula) : BDD
// Build a reduced BDD for ¬ϕ

i : integer // i indexes the variable order
n : integer // n is the number of Boolean variables in ΣBDD

//Recursive routine to implement BUILD
function BUILD-STEP(¬ϕ, i): vertex
begin

if (i > n) then //if there are no variables left to add
if (¬ϕ == f alse) then return 0
else return 1

//Recursive calls to build sub-trees
else v0 = BUILD-STEP(¬ϕ[σi = 0], i + 1) //compute the low subtree

v1 = BUILD-STEP(¬ϕ[σi = 1], i + 1) //compute the high subtree
//new_vertex creates a new vertex only if v0 and v1 are different
// and the σ-labeled node with them as children
// does not already exist
new_vertex(σi, v0, v1) //make/connect the new node

return
end

return (BDD = BUILD-STEP(¬ϕ, 0))

Figure 2.9 : Pseudocode for the Build algorithm from [166].

a symbolic automaton and then encode the result A¬ϕ as a BDD, as described in Chapter

2.9.1.

Once we have built BDDs representing each of M and A¬ϕ, we need to compute their

product, as described in Chapter 2.7. Let ΣBDD be the set of BDD variables encoding Σ. The

application of all binary operators over BDDs, including conjunction, disjunction, union,

intersection, complementation (via xor with 1), and testing for implication, is implemented

in a streamlined fashion utilizing a singular universal function. Apply, shown in Figure

2.10, takes as input a binary operator and BDDs representing two functions f1 and f2,

both over the alphabet ΣBDD = (σ1, . . . , σn) and produces a reduced graph representing the
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function f1 < op > f2 defined as:

[ f1 < op > f2](σ1, . . . , σn) = f1(σ1, . . . , σn) < op > f2(σ1, . . . , σn).

Apply begins by comparing the root vertices of the two BDDs and proceeds downward.

There are four cases. If vertices v1 and v2 are both terminal vertices, the result is simply the

terminal vertex representing the result of value(v1) < op > value(v2). If the variable labels

of v1 and v2 are the same, we create a vertex in the result BDD with that variable label

and operate on the pair of low subtrees, low(v1) and low(v2), and the pair of high subtrees,

high(v1) and high(v2), to create the low and high subtrees of our new vertex, respectively.

Otherwise, one of the variables, var(v1) or var(v2) is before the other in the total variable

ordering. Note that this later vertex may or may not be a terminal vertex; either way,

the algorithm is the same. If v1 is the earlier vertex, then the function represented by the

subtree with root v2 is independent of the variable var(v1). (If this were not true, we would

encounter the variable in both graphs.) In this case, we create a vertex in the result BDD

labeled var(v1) and recur on the pair of subtrees {low(v1), v2} to construct this new node’s

low subtree and on the pair of subtrees {high(v1), v2} to construct this new node’s high

subtree. The last case, where var(v2) occurs before var(v1) in the total variable ordering, is

symmetric. We presume new vertex() is some function that creates a new vertex iff no

isometric vertex exists, thus maintaining the reduced nature of the BDD under construction.

Bryant [159] and Wegener and Sieling [167] describe implementation optimizations that

yield a time complexity for this algorithm of O(|G1||G2|) where |G1| and |G2| are the sizes

of the two graphs being operated upon.

Recall that finding a counterexample trace equates to finding a word in the language

L (AM, ¬ϕ), which is essentially a satisfying assignment to the variables in Σ through time.

The model checker uses a BDD-based fixpoint algorithm to find a fair path in the model-
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algorithm APPLY(op : operator; v1, v2 : vertex): vertex
// Evaluate v1 op v2

u : vertex // u is the root vertex of the BDD representing v1 op v2
init(T ) // T is a hash table;

// T (i, j) is either ∅ or
// the earlier computed result of Apply-step(i, j)

//Recursive routine to implement APPLY
function APPLY-STEP(v1, v2 : vertex): vertex
begin

if (T (v1, v2) , ∅) then return T (v1, v2) //this vertex pair has already
// been evaluated

else if (v1 ∈ {0, 1} and v2 ∈ {0, 1}) then //both v1 and v2 are
// terminal vertices

u = v1 op v2 //evaluate the simple Boolean expression
// (This is the base case.)

else if (var(v1) == var(v2)) then //if v1 and v2 are rooted
// at the same variable

//progress down both trees to the next variable in the ordering
u = new vertex(var(v1), APPLY-STEP(low(v1), low(v2)),

APPLY-STEP(high(v1), high(v2)))
else if (var(v1) < var(v2)) then //if v1 is first in the variable

// ordering/nearer to root
//compare the children of v1 to v2
u = new vertex(var(v1), APPLY-STEP(low(v1), v2),

APPLY-STEP(high(v1), v2))
else if (var(v1) > var(v2)) then //if v2 is first in the variable

//ordering/nearer to root
//compare v2 to the children of v2
u = new vertex(var(v2), APPLY-STEP(v1, low(v2)),

APPLY-STEP(v1, high(v2)))

T (v1, v2) = u //store the result in T
return u

end

u = APPLY-STEP(v1, v2)
return u

Figure 2.10 : The Apply and Apply-step algorithms from [159].
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algorithm SATISFY-ONE(v: vertex, x: var_array) : Boolean
//Find any satisfying assignment of the BDD rooted at v
// Return the counterexample in x

if (v.value == 0) then return f alse //unsatisfiable
if (v.value == 1) then return true //satisfiable

i = v.level //i is the level of vertex v,
// also the place in the variable order

x[i] = 0 //guess 0 for this vertex
if SATISFY-ONE(v.low, x) then return true //satisfiable
x[i] = 1 //backtrack if x[i] = 0 results in f alse

// and guess 1 instead
return SATISFY-ONE(v.high, x) //we know x[i] = 1 will be true

Figure 2.11 : Pseudocode for the Satisfy-one algorithm from [159].

automaton product [66]. The basic algorithm underlying this process is Bryant’s Satisfy-

one, shown in Figure 2.11 [159]. This algorithm is a simple recognition of the BDD princi-

ple that every non-terminal vertex has the terminal vertex labeled 1 as a descendant. Thus,

a classic depth-first search with backtracking upon visiting the 0 terminal is guaranteed to

find a satisfying path from the root to the terminal 1 in linear time.15 Starting from the root,

Satisfy-one arbitrarily guesses the low branch of each non-terminal vertex first, and stores

a satisfying assignment (aka counterexample trace) of length n = |ΣBDD| in an array as it

traverses the graph. It returns false if the function is unsatisfiable, and true otherwise.

Note that the reason we check for the existence of a single satisfying set and not for the

whole set S M, ¬ϕ of satisfying sets is because enumerating the entire set requires time pro-

portional to the length of the counterexamples times the number of elements in S M, ¬ϕ. (For

a propositional formula with n = |ΣBDD|, the time complexity is O(n · |S M, ¬ϕ|).) Consider-

ing the counterexample traces may be quite lengthy (i.e. n may be large), and there may be

many of them, this is a highly inefficient check, unlikely to be performed in any reasonable

15One of the reasons maintaining a reduced BDD is important is that this algorithm can require exponential
time if not [159].
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timeframe. Furthermore, the utility of performing such a check is questionable: a single

bug may generate any number of counterexamples. For verification purposes, where coun-

terexamples may trace through many time steps, it is much more efficient to use the model

checker to find a bug, then fix that bug before searching for additional counterexamples.

By changing the domain of the model-checking problem to reasoning over BDD oper-

ations from explicit manipulations of automata, we increase the size of the system we can

reason about. Combining concepts from Boolean algebra and graph theory allows us to

achieve such a high level of algorithmic efficiency that the performance of symbolic model

checking using these techniques is limited mostly by the sizes of the BDDs involved. Table

2.2 compares the two methods for each step in the model-checking problem.

2.10 Checking for Counterexamples: Symbolically

We construct the automaton AM, ¬ϕ as the composition of the system automaton M and the

automaton for the complemented LTL specification A¬ϕ. The model checking question,

“does M, q0 |= ϕ,” then reduces to asking “is the language L (AM, ¬ϕ) empty?” The follow-

up to this question is “if not, what word(s) does AM, ¬ϕ accept?” Any such word represents

a computation of M that violates ϕ, constituting a counterexample to the check M, q0 |= ϕ

and providing a valuable debugging tool for locating the bug. Thus, in practice, the model-

checking step is performed in two parts: an emptiness check on the language L (AM, ¬ϕ)

and the construction of the (preferably shortest) counterexample witness if L (AM, ¬ϕ) , ∅.

The earliest complete symbolic model-checking algorithm was designed in 1992 by

Burch, Clarke, McMillan, Dill, and Hwang to take advantage of regularity in the state graph

of the system and utilize the intuitive complexity of the state space rather than the explicit

16Here, the time complexity depends upon the size of the symbolic (BDD) representation in terms of the
distances between states in the automaton graph, the number and arrangement of the strongly connected
components in this graph, and the number of fairness conditions asserted.
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Operation Explicit Method Time Symbolic Time
Complexity Method Complexity

Translate M
from a

higher-level
language

Construct a
Büchi

automaton

depends on M Construct an
ROBDD

O(2|Σ×Σ|)

Translate ϕ
from LTL to

A¬ϕ

Construct a
Büchi

automaton

2O(|ϕ|) Construct an
ROBDD

O(2|el(¬ϕ)|)

Create AM, ¬ϕ Construct
automaton for

L (M)∩L (A¬ϕ)

O(|M| × |A¬ϕ|) Compute
(ROBDDM ∧

ROBDD¬ϕ)

O(|ROBDDM |

|ROBDD¬ϕ|) =

O(2|Σ×Σ|2|el(¬ϕ)|)
Check AM, ¬ϕ

for
nonemptiness

Search for an
accepting path

via iterative
depth-first

search of the
strongly

connected
components

O(|AM, ¬ϕ|) Compute the
fixpoint of the

combined BDD
with the spec
E� true

O(|BDD −
representation|)

16

Construct a
counterexample

Compute an
accepting cycle

through the
SCC graph

O(|trace|) Find a path
leading to the

terminal node 1
by a depth-first

traversal of
ROBDDM, ¬ϕ

Linear in the
length of the
counterexam-

ple found:
O(|trace|)

Table 2.2 : Table comparing explicit and symbolic model-checking algorithms. Recall
that el(¬ϕ) is the set of elementary formulas of ϕ as defined in Chapter 2.6. We presume
the ROBDDs for M and ¬ϕ are created using the appropriate variants of the Build algo-
rithm [166]. The ROBDD for AM, ¬ϕ is created by an extension of the algorithm Apply(∧,
ROBDDM, ROBDD¬ϕ) [166], implementing the dynamic programming optimizations that
result in lower time-complexities. Finally, the algorithm used for finding a counterexample
given an ROBDD is based on AnySat [166]. Note that, for both explicit and symbolic
model checking, multiple steps above are performed at once, using on-the-fly techniques,
which increases the efficiency of the process and may avoid constructing all of AM, ¬ϕ. We
separate out the steps here for simplicity only.
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size of the space [64]. We present an updated algorithm here, better suited to symbolic

LTL model checking specifically [37], which takes full advantage of our automata-theoretic

approach, allowing very naturally for extensions to the basic algorithm [34]. An issue with

using the original symbolic model-checking algorithm, and later variants thereof, for LTL

model checking is that they operated via a translation to the type of fair transition system

also used for CTL model checking with fairness constraints [65], which itself involved

a conversion to the µ-calculus [64, 20]. This method is indirect, complex, and does not

account for the full expressibility of LTL such as full fairness, also called strong fairness

or compassion. Recall from Chapter 2.5 that compassion extends justice to include the

existence of sets of cyclically recurring system states. Compassion can be particularly

useful when specifying special types of coordination, such as semaphores or synchronous

communication protocols. In Chapter 2.5 we showed that compassion requirements can be

included via specifications. We can also include compassion natively in the system model.

The classical automata-theoretic approach to model checking using justice corresponds

to reasoning over generalized Büchi automata whereas adding compassion extends this to

reasoning over Streett automata [168]. Streett automata are essentially the same as Büchi

automata but with more general acceptance conditions, enabling the direct encoding of

stronger notions of fairness [130]. Instead of specifying F, the set of final states that must

be visited infinitely often in Büchi acceptance, Streett acceptance takes the form of a set of

pairs of sets of states, (Li,Ui) such that if a run visits Li infinitely often, it must also visit Ui

infinitely often [130]. The pairs of sets of states in Streett acceptance conditions correspond

nicely to the definition of generalized fairness [169]. Of course, since Streett automata

are expressively equivalent to Büchi automata and there is a straightforward conversion

between the two [130], adding compassion at the algorithmic level does not substantially

change our nonemptiness check [34].

Recall from Figure 2.5 that a counterexample witness takes the shape of a lasso: a finite
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prefix starting from the initial state, q0, and leading to an accepting cycle of the automaton

AM, ¬ϕ. For LTL model checking, fairness requirements are captured by the automata ac-

ceptance conditions, so each justice requirement and compassion requirement constitutes

an additional acceptance condition. The challenge, then, is to find a reachable fair cycle,

or a cycle that passes through at least one state satisfying each acceptance condition. Such

a cycle is often referred to as a ’bad cycle’ because it is a cycle on which all acceptance

conditions (including fairness) are satisfied yet our specification, ϕ, is violated, which is

certainly an undesirable outcome considering our goal is to prove that the system M never

violates ϕ. We return as the counterexample, the list of states comprising the finite stem

from q0 to some state in this fair cycle, followed by a listing of the states visited in the

cycle.

We want to find the shortest counterexample because that facilitates debugging and, in

some cases, returning a shorter counterexample can save time and memory. However, this

step in the model-checking process needs to be fast and finding the shortest counterexam-

ple is NP-complete [170], so we depend instead on reliable heuristics to efficiently find a

(hopefully) short counterexample quickly.17 Furthermore, we want to construct this coun-

terexample directly from our symbolic automaton AM, ¬ϕ for maximum efficiency. For this

reason, there has been a concentration on finding efficient symbolic cycle-detection algo-

rithms. The first such effort, by Emerson and Lei [66], produced an algorithm that operates

in quadratic time due to the presence of a doubly-nested fixpoint operator, but is still a

standard to which all later algorithms are compared. All of these algorithms perform some

iterative computation over the reachable states in the automaton AM, ¬ϕ to find paths to fair

cycles. In order to accomplish this, it is necessary for us to treat this automaton as a graph

and employ some classic techniques from graph theory.

17For an algorithm that always returns the shortest counterexample, see [171].
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2.10.1 Automata as Graphs

Formally, a predicate over the set of states Q is any subset P ⊆ Q. A binary relation over

Q is any set of pairs R ⊆ Q × Q such that, for predicates P1 and P2:

P1 × P2 = {(q1, q2) ∈ Q2|q1 ∈ P1, q2 ∈ P2}.

Recall that a Büchi automaton can be viewed as a special case of a directed graph

G = (V, E) where V is the finite set of vertices, or the states of the automaton such that

V = Q, and E ⊆ V×V is the set of edges, or the binary relation encapsulating the transitions

of the automaton such that (q, q′) ∈ E whenever δ(q, σ) = q′ for two states q and q′ and

any alphabet character σ ∈ Σ. A path through the graph that corresponds to a computation

of the automaton, from some state q j to state qk is a sequence < q j, q j+1, q j+2, . . . qk > of

vertices such that (qi−1, qi) ∈ E for i = j + 1, j + 2, . . . , k. Along such a path, we call

vertex qi−1 a predecessor of state qi and vertex qi+1 a successor of qi. Note that a path must

contain at least one edge but the presence of self-loops means that a state can be its own

predecessor or successor. If there is a path from q j to qk, we say that qk is reachable from q j

or that q j { qk. Let R represent the binary relation corresponding to the transition relation

δ of AM, ¬ϕ. We can extend this relationship for a predicate P and a relation R using pre-

and post-composition as follows:

R ◦ P = {q ∈ Q|(q, q′) ∈ R for some q′ ∈ P}

P ◦ R = {q ∈ Q|(q̂, q) ∈ R for q̂ ∈ P}

In other words, R ◦ P is the set of all predecessors of states in the set P. Conversely,

P ◦ R is the set of all successors of states in the set P, or the set of all states reachable in

a single transition from P in the graph of AM, ¬ϕ, which we call GAM, ¬ϕ . We can employ
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the ∗-operator to define R∗ ◦ P, the set of all states that can reach a P-state within a finite

number (0 or more) steps. Similarly, we designate the set of all states reachable in a finite

number of steps from a P-state as P ◦ R∗. Expanded, we have:

R∗ ◦ P = P ∪ R ◦ P ∪ R ◦ (R ◦ P) ∪ R ◦ (R ◦ (R ◦ P)) ∪ . . .

P ◦ R∗ = P ∪ P ◦ R ∪ (P ◦ R) ◦ R ∪ ((P ◦ R) ◦ R) ◦ R ∪ . . .

Since AM, ¬ϕ is finite, it is clear that both R∗ ◦ P and P ◦ R∗ converge in a finite number

of steps. Because P ◦R∗ consists of the set {q′ ∈ Q|q{ q′}, it is also called the forward set

of state q. In the same vein, R∗ ◦ P comprises the backward set of state q or {q̂ ∈ Q|q̂{ q}.

We define the diameter d of a graph to be the length of the longest minimal path between

any two states (q j, qk ∈ G such that q j { qk. In other words, for all pairs of connected

vertices (q j, qk) ∈ G, setting the distance from q j to qk to the smallest number of states on

any path between them, d is the longest such distance in G.

A connected component, is a maximally connected subgraph such that two vertices

are in the same connected component if and only if there is some path between them.

Meanwhile, a strongly connected component (SCC) is a maximal subgraph such that every

vertex in the component is reachable from every other vertex in the component. That is, for

any strongly connected component S , for all vertices q j, qk such that q j ∈ S and qk ∈ S ,

q j { qk and qk { q j. An individual vertex, not connected to itself, comprises a singular or

trivial SCC. A path < q j, q j+1, q j+2, . . . qk > forms a cycle if q j = qk and the path contains

at least one edge. Thus, a strongly connected component is essentially a set of vertices

such that every pair of vertices in the set is contained in some cycle. Algorithms for finding

SCCs in symbolic graphs take advantage of the following property:

Theorem 2.5

The intersection of a node’s forward and backward sets is either empty or a strongly con-
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nected component (SCC).

Proof of Theorem 2.5

Let q be a vertex in directed graph G. Let F(q) represent the forward set of q and B(q)

represent the backward set of q. First, presume q is in an SCC S . By definition of an SCC,

all nodes are reachable from and can reach all other nodes in the SCC. Therefore, all of

the nodes in the SCC containing q would have to be in both q’s forward and backward

sets, or S ⊆ F(q) ∩ B(q). Furthermore, no additional nodes not in the SCC containing

q can be in the set F(q) ∩ B(q). Let q′ be a node in F(q) ∩ B(q). Then q { q′ and

q′ { q. Since every node q̂ ∈ S has a path to and can be reached from q, then it must

be the case that q′ and q̂ are strongly connected by some path through q. In other words,

q′ { q { q̂ and q̂ { q { q′. Therefore, we know that F(q) ∩ B(q) ⊆ S . Together, we

have S ⊆ F(q) ∩ B(q) ∧ F(q) ∩ B(q) ⊆ S → F(q) ∩ B(q) = S . It logically follows that the

node q is not in an SCC iff F(q) ∩ B(q) = ∅. �

A terminal SCC is an SCC with no edges leading out to nodes outside the SCC. Sym-

metrically, an initial SCC is one with no edges leading in from nodes outside the SCC. In

Theorem 2.5 above, we take the intersection of node q’s forward and backward sets be-

cause a node q in an SCC can still have a transition to another node outside that SCC so if

the node q is in an SCC that is not terminal, there may be many more nodes in its forward

set that are reachable from that SCC. Symmetrically, a node q in an SCC can still have a

transition in from another node outside that SCC so if the node q is in an SCC that is not

initial, there may be many more nodes in its backward set that can reach that SCC. All

of the algorithms for symbolic cycle detection utilize some combination of computing for-

ward sets (successors) while looking for initial SCCs, backward sets (predecessors) while

looking for terminal SCCs, or some intermingling of both strategies.

Recall that the acceptance condition for a generalized Büchi automaton requires cycling
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through a state in each set in F (the set of sets of states where each acceptance condition

holds) infinitely often and that an accepting run of a generalized Büchi automaton resem-

bles a lasso with a path from the start state to an accepting cycle. Thus, finding an accepting

run of a generalized Büchi automaton comes down to finding a path to a strongly connected

component in the graph of AM, ¬ϕ, GAM, ¬ϕ , that contains at least one state satisfying each

acceptance condition.

Strong Fairness In LTL model checking, we may place these conditions on acceptance:

that the counterexample found must be just and that it must be compassionate. For each

justice requirement J in the set of justice requirements J over AM, ¬ϕ, we define a set of

J-states (states that satisfy J). We call a subgraph just if it contains a J-state for every

justice requirement J ∈ J . Similarly, for each compassion requirement over AM, ¬ϕ, we

define a pair of sets (y, z) ∈ C that constitute that requirement where C is the set of all such

pairs. We call a subgraph compassionate if, for every compassion requirement (y, z) ∈ C

the subgraph either contains a z-state or else does not contain any y-state. Combining these,

we have that a subgraph is fair if it is a non-singular strongly connected component that is

both just and compassionate, in that it intersects each accepting set of states in both J and

C. Therefore, a counterexample lasso must be reachable from q0 and cycle infinitely often

through at least one state satisfying each acceptance condition, which involves visiting a

minimum set of states satisfying any justice or compassion requirements we have asserted

over AM, ¬ϕ.

Theorem 2.6

[49] An infinite initialized path π is a computation of AM, ¬ϕ iff the set of states S that appear

infinitely often in π comprise a fair SCC of the graph representing AM, ¬ϕ, GAM, ¬ϕ .

Proof of Theorem 2.6

If-direction: π is a computation of AM, ¬ϕ → S is a fair SCC in GAM, ¬ϕ .
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Presume AM, ¬ϕ has a computation π = π0, π1, . . .. By definition, π carves out an infinite

path, starting in state q0 that passes infinitely often through at least one state satisfying

each acceptance condition (justice or compassion requirement) of AM, ¬ϕ. Since AM, ¬ϕ is

finite, π takes the shape of a lasso with a finite prefix of states starting from q0 to a cycle

containing all of the states π visits infinitely often. We define S to be the set of all states

along that cycle. Then, S must be fair since π is an accepting run of AM, ¬ϕ. Furthermore,

S must be strongly connected since for all pairs of states s, s′ ∈ S , both s and s′ appear

infinitely often in π, so s{ s′ and s′ { s.

Only-if direction: S is a fair SCC in GAM, ¬ϕ → π is a computation of AM, ¬ϕ.

Presume S is a fair SCC in GAM, ¬ϕ . Consider some path π, originating in q0 such that

the set of states visited by π infinitely often is defined to be S . We can construct such a

path by connecting every pair of states s, s′ ∈ S such that (s, s′) ∈ E, which is equivalent

to saying δ(s, σ) = s′ for some character σ ∈ Σ. That is, we traverse every edge between

states in S . In this way, we form the cycle such that there are infinitely many positions j

such that π j = s and π j+1 = s′. By definition of a fair SCC, we know S intersects each

accepting set of states in GAM, ¬ϕ . Therefore, by definition, π is a computation of AM, ¬ϕ. �

2.10.2 Symbolic Methods for Graph Traversal

The standard algorithm for finding strongly connected components in a directed graph

is depth-first search. Indeed, this is the algorithm used in explicit-state model checking

for finding and returning counterexamples. However, in symbolic model checking we are

not using an explicit automaton graph; our graph is instead encapsulated succinctly using

BDDs. We have encoded the graph in terms of sets of states and sets of transitions, al-

tering the problem of traversing the graph. Due to the nature of this encoding, depth-first

approaches, while optimal for examining individual states, are not suitable for symbolic cy-



www.manaraa.com

86

cle detection. Rather, we employ breadth-first, set-based cycle-detection algorithms better

suited to searching over the characteristic function, S h, as defined in Chapter 2.6.

Our goal is to locate a fair subgraph of GAM, ¬ϕ because, as we know from Theorem

2.6, this will allow us to construct a counterexample, which is a computation of AM, ¬ϕ.

This search is an iterative process. Essentially, we will compute some part of the tran-

sitive closure of the transition relation of AM, ¬ϕ, i.e. R∗ ◦ P or P ◦ R∗, preferably with-

out incurring the computational expense of computing the entire transitive closure. To

accomplish this, symbolic algorithms take advantage of meta-strategies for dealing with

the set-based encoding of graphs such as intelligently partitioning GAM, ¬ϕ and reasoning

over the SCC quotient graph of GAM, ¬ϕ . The SCC quotient graph is a directed, acyclic

graph Gquotient = (Vquotient, Equotient) such that the set of vertices Vquotient is the set of SCCs in

GAM, ¬ϕ . Again, let R represent the binary relation corresponding to the transition relation δ

of AM, ¬ϕ. For two vertices V1,V2 ∈ Vquotient, there is an edge (V1,V2) ∈ Equotient iff V1 , V2

(so there are no self-loops) and ∃v1 ∈ V1, v2 ∈ V2 : (v1, v2) ∈ R. Restated, there is an edge in

Gquotient whenever there is an edge in GAM, ¬ϕ from a state in one SCC to a state in a different

SCC. Note that it is easy to prove that Gquotient is acyclic since if there were a cycle in this

graph, then all of the states in all of the SCCs on such a cycle would be reachable from

each other, which contradicts their status as separate SCCs. Gquotient defines a partial order

over the SCCs in GAM, ¬ϕ such that v1 ≤ v2 for any states v1 ∈ V1, v2 ∈ V2 iff v1 { v2. Us-

ing Gquotient, we can identify the initial SCCs of GAM, ¬ϕ as the sources of the graph and the

terminal SCCs as the sinks. It is easier to reason about sets of predecessors and successors

and partition the graph GAM, ¬ϕ to limit our search. Symbolic algorithms utilize these types

of tools to reduce the fair subgraph search problem to a smaller set of nodes than the entire

graph GAM, ¬ϕ .

Whereas the time required for the depth-first exploration of the graph of AM, ¬ϕ per-

formed in explicit-state model checking is directly dependent on the size of AM, ¬ϕ, this
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is not the case for symbolic model-checking algorithms, many of which are less efficient

than that in the worst case. After all, symbolic algorithms derive their efficiency by repre-

senting compact characteristic functions instead of large numbers of individual states. In

practice, the number of states in AM, ¬ϕ is not nearly as accurate a predictor of the time

required for symbolic model checking as the graph diameter d, the length of the longest

path in the SCC quotient graph, the number of justice and compassion requirements, the

number of reachable SCCs (and how many of those are trivial), and the total number and

size of the set of SCCs [172]. Basically, the number of states is frequently very large but

some shapes of AM, ¬ϕ are much easier to model check than others. This is an advantage of

utilizing symbolic algorithms since many very large graphs can be reduced to very succinct

symbolic representations. The trade-off between the size of the representation of AM, ¬ϕ

and the search complexity is necessary for practical verification. As the number of states in

AM, ¬ϕ grows, considering every state individually quickly becomes infeasible so symbolic

examination of the state space – while more difficult – is necessary to achieve scalability.

Generally, the length of the counterexample found also depends heavily on the structure of

the graph and the size of the symbolic representation.

There are many variations of this algorithm that have been created to provide better

time-complexities, better performance times, and shorter counterexamples.18 Optimizing

fair cycle detection for symbolic model checking remains an active area of research [173,

171, 174, 175, 176, 172, 177, 178, 179].

There are two general classes of symbolic cycle-detection algorithms:

• SCC-hull algorithms: Most symbolic cycle-detection algorithms [66, 173, 164,

174, 37, 178] sequester an SCC-hull, or a set of states that contains all fair SCCs,

without specifically enumerating the SCCs within. This set computation is not tight;

18Note that the problem of finding the shortest counterexample is NP-complete [170].
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if there are fair SCCs in the graph, the SCC-hull algorithms may return extra states

besides those in the fair SCCs.19 Basically, these algorithms maintain an approxima-

tion set, or a conservative overapproximation of the SCCs. The approximation set is

iteratively refined by pruning, or locating and removing states that cannot lead to a

bad cycle utilizing the property that any state on a bad cycle must have a successor

and a predecessor that are both on the same cycle, in the same SCC, and therefore in

the approximation set. In the case that there are no fair SCCs, these algorithms return

the empty set. These algorithms locate the SCC-hull using a fixpoint algorithm that

either computes the set of all states with a path to a fair SCC [66], from a fair SCC

[173], or some combination of both [174] since both of these sets include the states

contained in a fair SCC, if one exists. Counterexamples are generated by searching

for a path from the initial state q0 to a state in a fair cycle then iterating through the

set of acceptance conditions using breadth-first-search to find the shortest path to a

state in the next fair set until the cycle is completed. Depending on the specific SCC-

hull algorithm, varying amounts of additional work may be required to isolate the

fair SCC to be returned in a counterexample.

• Symbolic SCC-enumeration algorithms: Alternatively, SCC-enumeration algo-

rithms [171, 175, 176, 177] enumerate the SCCs of the state graph while taking

advantage of the symbolic representation to avoid explicitly manipulating the states.

Rather than extracting the (terminal or initial) SCCs from the set of all SCCs in a

hull, these algorithms aim to compute reachability sets (either forward or backward)

for fewer nodes by isolating SCCs sequentially. This is accomplished, for example,

by recursively partitioning GAM, ¬ϕ and iteratively applying reachability analysis to

19We can compile a tighter set of fair SCCs by directly computing the exact transitive closure of the
transition relation rather than an overapproximation but this method is comparatively inefficient for reasoning
over BDDs [172].
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the subgraphs. The motivation is that many systems have only a limited number of

fair SCCs so these algorithms can achieve a better worst case complexity than SCC-

hull algorithms [177], but in practice their performance has been inferior [172]. Like

with SCC-hull algorithms, these algorithms utilize some combination of forward and

backward search, possibly in an interleaved manner. Pruning helps to reduce the

number of trivial SCCs examined. After each SCC is identified, it is checked for

fairness. The algorithm terminates as soon as the first fair SCC is located and may

end up either enumerating all SCCs or paying additional computation cost for early

elimination of unfair SCCs in the case that no fair SCC exists. Consequently, these

algorithms tend to perform worse than SCC-hull algorithms when there are no fair

SCCs or a large number of unfair SCCs present in AM, ¬ϕ [172]. Counterexamples

are constructed similarly to, but possibly more efficiently than, SCC-hull algorithms

since it is theoretically easier to locate a counterexample given that the enumerated

fair SCC in question is tight. The length of the counterexample depends on which fair

SCC is enumerated first, which is determined by the starting state of the algorithm,

so optimizations include heuristics for choosing seed states in short counterexample

traces.

2.10.3 SCC-hull Algorithm for Compassionate Model Checking

Here we present the full algorithm for symbolic LTL model checking, including for the sake

of completeness, support for compassion at the algorithmic level, as opposed to adding it

to the specification or allowing only weaker forms of fairness. All symbolic LTL model

checkers support justice but not all support compassion. For example, at the time of this

writing, NuSMV supports compassion [180] but CadenceSMV does not [181]. Currently,

compassion requirements are rarely used in industrial practice. The algorithm discussed in

this section was first published in 1998 by Kesten, Pnueli, and Raviv [37] and is exactly
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the under-the-hood implementation in NuSMV today [180]. It is presented in a straight-

forward manner using standard set theory since set operations on the languages accepted

by finite automata translate transparently to logical operations on Boolean functions, as we

discussed in Chapter 2.9.

We call an automaton feasible if it has at least one computation. The corollary to

Theorem 2.6 is that AM, ¬ϕ is feasible iff GAM, ¬ϕ contains a fair subgraph (a non-singular

strongly connected component that is both just and compassionate). Therefore, we first

check for the presence of a fair subgraph and determine the feasibility of our combined

automaton. The model-checking problem reduces to M |= ϕ iff AM, ¬ϕ is not feasible. If

AM, ¬ϕ is not feasible, then our verification is complete; we can conclude that M |= ϕ. If

AM, ¬ϕ is feasible, we will need to construct a (preferably short) counterexample.

Indeed, the algorithm for checking whether an automaton is feasible is essentially a

specialization of the standard iterative algorithm for finding strongly connected compo-

nents in a graph. The original cycle-detection algorithms for explicit-state model checking

recursively mapped strongly connected subgraphs, computing closures under both succes-

sors and predecessors [39, 41]. Later it was proved that the requirement of bi-directional

closure is too strong [37]. The algorithm, FEASIBLE(), presented in Figure 2.12, re-

quires only closure under successor states while looking for initial components of the graph

[37].20 Proofs of soundness, completeness, and termination of this algorithm are provided

in [37, 49].

The algorithm FEASIBLE() takes as input a synchronous parallel composition of the

system and specification, which in our case is AM, ¬ϕ. Recall that in this construction, ¬ϕ is

essentially serving as a tester of M, continuously monitoring the behavior of the system and

making sure the system satisfies the desired property. Let ||ψ|| denote the predicate consist-

20An equivalent algorithm would be to check for closure under predecessor states while looking for termi-
nal components in the state-transition graph.
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algorithm FEASIBLE(AM, ¬ϕ): predicate // Check feasibility of AM, ¬ϕ

new, old : predicate //a predicate is a subset of
the set of states Q

R : relation //a relation is a set of pairs of states

old = ∅ //initialize old to the empty set
R = ||δ|| //R is the set of all state pairs in the

transition relation of AM, ¬ϕ

new = ||q0|| ◦ R∗ //new is the set of all states reachable from
a start state in AM, ¬ϕ in a finite number
of steps

while (new , old) do
begin

old = new
for each J ∈ J do //for each justice requirement J in the set J

new = (new ∩ ||J||) ◦ R∗ //new is reduced to the set of new states reach-
able in a finite number of transitions from
a state satisfying justice requirement J

for each (y, z) ∈ C do //for each compassion requirement (y, z)
in the set C

begin
new = (new − ||y||) ∪ [(new ∩ ||z||) ◦ R∗] //subtract from new all states

where y holds and add to new all
states reachable in a finite num-
ber of steps from a z-state in new

R = R ∩ (Q × new) //subtract from R all transitions that don’t
lead into a state in new

end
while (new , new ∩ (new ◦ R)) do //while new is not comprised of the set

of all successors of new states
new = new ∩ (new ◦ R) //reduce new to states that have predecessors

in new
end
return (new) //here, new should contain only f air

strongly connected components

Figure 2.12 : Pseudocode for the feasible algorithm from [37].
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ing of all states that satisfy ψ, for some formula ψ, and ||δ|| denote the relation consisting of

all state pairs < q, q′ > such that δ(q, σ) = q′ for any alphabet character σ ∈ Σ. Our subrou-

tine starts by computing the set of all successors of the initial state, q0 in the predicate new.

Because any run of AM, ¬ϕ will satisfy the initial condition and obey the transition relation

but not necessarily satisfy the justice and compassion requirements, we need to check for

this characteristic additionally. We loop through each justice and compassion requirement,

subtracting states from new that are not reachable in a finite number of steps from states

satisfying that requirement. Then we remove from new all states that do not also have a

predecessor in new since such states cannot be part of a strongly connected component. We

repeat this process until we reach a fixpoint; looping through every fairness requirement,

checking for predecessors, and reducing new accordingly does not change the size of new.

At this point, if new is empty, we return the emptyset and conclude that AM, ¬ϕ is not fea-

sible and, therefore, M |= ϕ. If new is not empty, then it contains a fair strongly connected

component of GAM, ¬ϕ from which we must extract a counterexample witness.

To aid in our quest to efficiently find a short counterexample, if possible, we require

a subroutine to find the shortest path between two states in GAM, ¬ϕ . Let λ represent the

empty list. We use the ∗-operator to denote list fusion such that if L1 = (`1, `2, . . . `i) and

L2 = (`i, `i+1, . . .) are standard list data structures such that the last element of L1 is the same

as the first element of L2, then L1∗L2 = (`1, `2, . . . `i, `i+1, . . .) represents their concatenation,

overlapping this shared element, or simply concatenating the lists if there is no overlap. We

define the function choose(P) to consistently choose one element of a predicate P. Then

we have the PATH() subroutine in Figure 2.13.

We are now ready to present the full counterexample extraction algorithm, which we

call WITNESS(), displayed in Figure 2.14. For completeness, we show the step of check-

ing AM, ¬ϕ for feasibility in context. We define the function last(L1) to return the last ele-

ment in the list L1.
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// Compute shortest path from source to destination
function PATH(source, destination : predicate; R: relation) : list

start, f : predicate //a predicate is a subset
of the set of states Q

L : list //a list is an ordered sequence of states
s : state
start = source
L = λ //L is now the empty list
while (start ∩ destination == ∅) do
begin

f = R ◦ destination //start set f is the set of all predecessors
of destination states

while (start ∩ f == ∅) do //while we haven’t found a path back to start
f = R ◦ f //add all of the predecessors of the states

currently in the set f
s = choose(start ∩ f ) //pick one of the shortest path start states
L = L ∗ (s) //add this state to the end of the state list
start = s ◦ R //add all successors of s to the set start

end
return L ∗ (choose(start ∩ destination)) //push the last state onto the end of

the list and return the path

Figure 2.13 : Pseudocode of the path algorithm from [37].

After checking AM, ¬ϕ for feasibility, we exit if M |= ϕ. If not, we know that the

set returned by FEASIBLE(), which we save in f inal, contains all of the states in fair

SCCs that are reachable from q0. We look at the set of successors of states in the set

f inal. We pick a state from this set and iterate, replacing our chosen state s with one of

its predecessors until the set of predecessors of s is a subset of the set of successors of

s. Basically, we are attempting to move to an initial SCC in the quotient graph of GAM, ¬ϕ .

Termination of this step is guaranteed by the finite nature of GAM, ¬ϕ and the structure of the

quotient graph. Next, we compute the precise SCC containing s, restrict our attention to

transitions between states in this SCC, and utilize our shortest path algorithm to find the

prefix of our counterexample, or the path from q0 to our fair SCC. Then we construct the

fair cycle through our SCC that satisfies all fairness requirements. In order to do this, we

loop through each justice requirement, adding to our cycle a path to a state that satisfies that
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algorithm WITNESS(AM, ¬ϕ) : [list, list]
// Extract a witness for AM, ¬ϕ

f inal : predicate
R : relation
pre f ix, period : list
s : state
f inal = FEASIBLE(AM, ¬ϕ) //the model-checking step
if ( f inal == ∅) then return (λ, λ) //∅ indicates that M, q0 |= ϕ
R = ||δ|| ∩ ( f inal × Q) //R is the set of all transitions out

of a state in a fair SCC in GAM,¬ϕ

s = choose ( f inal) //pick one state from the set f inal
while (R∗ ◦ {s} − {s} ◦ R∗ , ∅) do //while the states from which we can

reach s are not all states that can
be reached from s

s = choose(R∗ ◦ {s} − {s} ◦ R∗) //replace s with a predecessor that is
not also a successor

f inal = R∗ ◦ {s} ∩ {s} ◦ R∗ //compute the SCC containing s,
i.e. the maximum set of states t such
that (t { s) ∧ (s { t)

R = R ∩ ( f inal × f inal) //R now contains only transitions
within the SCC f inal

pre f ix = PATH(||q0||, f inal, ||δ||) //pre f ix is now a shortest path from an
initial state to a state in f inal

period = (last(pre f ix)) //period starts in the final state of
pre f ix

for each J ∈ J do //add in the justice requirements
if (list − to − set(period) ∩ ||J|| == ∅) then //if there are no states in period

satisfying justice requirement J
period = period ∗ PATH({last(period)}, f inal ∩ ||J||, R) //add to the end of

period a shortest path to a state
satisfying J

for each (y, z) ∈ C do //add in the compassion requirements
if ((list − to − set(period) ∩ ||z|| == ∅) ∧ ( f inal ∩ ||y|| , ∅)) then
//if this compassion requirement isn’t satisfied
period = period ∗ PATH({last(period)}, f inal ∩ ||z||, R) //add a z state

into period
period = period ∗ PATH({last(period)}, {last(pre f ix)}, R)

//finish period with a path to the end of pre f ix to form a complete loop
return(pre f ix, period)

Figure 2.14 : Pseudocode for the witness algorithm from [37].
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requirement if there is not one in the cycle already. We do the same for each compassion

requirement. Finally, we complete the cycle with the shortest path back to the state we

started the cycle from and we are ready to return our counterexample.

2.11 Discussion

While the complete algorithms presented here serve as the basis for all LTL model checking

performed in industry, in practice, extensions to these algorithms are much more commonly

used. We present the foundation upon which more specialized and scalable variations are

built. Industrial applications frequently necessitate the use of extensions that provide addi-

tional scalability such as compositional verification [95], in which subunits of the system

M and the interactions between these subunits are model checked separately, each in the

manner presented here. Also, bounded model checking [155] depends upon a proposi-

tional SAT solver to replace the BDD operations of classical symbolic model checking and

bounds the length of any possible counterexample to be less than some constant k. While

this variation no longer provides the guarantee that no counterexample of any length exists,

it vastly increases the size of systems we are able to verify, providing better guarantees

of termination in a reasonable timeframe. Allowances for adding operators to LTL, as de-

scribed in Chapter 2.2.2, are also implemented through adjustments to the algorithm for

translating standard LTL.

Arguably the most pressing challenge in model checking today is scalability. We must

make model-checking tools more efficient, in terms of the size and complexity of the mod-

els they can reason about and the time and space they require, in order to scale our verifi-

cation ability to handle real-world safety-critical systems. Currently, LTL symbolic model

checking is best used for systems whose state sets have short and easily manipulated de-

scriptions [182]. However, we have previously mentioned that there are some functions
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with unavoidably exponential symbolic representations.21 In the future, we expect even

more specialized variants of this algorithm to branch out from the common framework we

have presented here in order to provide a greater array of options for practical LTL sym-

bolic model checking of real-world systems, including those with characteristics we are

currently unable to accommodate.

In the coming years, we expect to see more refined techniques for adding uncertainty

in the model such as inaccurate sensor data or models of humans in the loop, abstractions

for representing real-valued and infinite-range variables, algorithms that include probabilis-

tic randomization, other extensions that allow probabilistic reasoning similar to rare-event

simulation, and more tools for efficient model checking for extensions of LTL such as the

industrial logics overviewed in Chapter 2.2.2.

21See [159] for a proof that a BDD representation of a function describing the outputs of an integer multi-
plier grows exponentially regardless of the variable ordering.
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Chapter 3

Establishing Better Benchmarks

Before we introduce new constructions that we will argue perform better than the state-of-

the-art, we address the questions of how the state of the art should be evaluated, and how

we can fairly measure whether an alternative is “better.” J.N. Hooker declared [183], “It is

hard to make fair comparisons between algorithms and to assemble realistic test problems.”

Indeed, in the case of evaluating algorithms for LTL-to-automata, answering the question of

what, precisely, is the state of the art and which algorithm(s) are best was, before the contri-

butions of this thesis, a particularly daunting task. There are numerous papers introducing

algorithms for constructing automata from LTL formulas and each one presents experimen-

tal results showing the superiority of that algorithm over other algorithms available at the

time of publication. Most often, these works focused on measuring the size of the automata

produced as a proxy for their “goodness.” They assumed smaller automata would perform

better, i.e. lead to faster model checking times, though there was no established rigorous

basis for this assumption.

Previously, the best we could conclude was that, for every publicly available LTL-to-

automaton algorithm, there exists some test in which that algorithm performs very well,

where usually this meant that it produced smaller automata than other algorithms. In this

thesis, we revisit the following fundamental questions:

1. What should we be measuring? What does it mean for one LTL-to-automaton

algorithm to be “better” than another?

2. How do we objectively measure it? For every published LTL-to-automaton algo-
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rithm, the authors include some experimental evaluation demonstrating that their al-

gorithm is the best. How to we fairly evaluate all of these claims and pinpoint which

algorithm(s) are actually best?

In this chapter, we address these two questions. In Section 3.1 we elaborate on the

factors that we consider to constitute good benchmarks. In Sections 3.2, 3.3, and 3.4, we

define three major classes of benchmarks consisting of counter, pattern, and random for-

mulas, respectively, along with scalable models against which to check them defined in

Section 3.5. We specialize these ideas to benchmark the performance of LTL-to-automaton

algorithms in the context of model checking of safety properties in Section 3.6. Section

3.7 covers our new idea for taking into account correctness while benchmarking. We enu-

merate the performance aspects measured in our experimental evaluations and argue that

our analysis provides an objective comparison of LTL-to-automaton algorithms in Section

3.8. More details on the code used for all of the benchmarks described here are available

in Appendix ?? and online.

3.1 Importance of Good Benchmarks

We argue that a set of good benchmarks should necessarily address the following questions.

1. What should we be measuring? In this thesis, we fill a gap by addressing, in depth,

the question: what does it mean for one algorithm to perform better than another?

Many previous papers claimed that producing the smallest automata, in terms of

number of states, number of transitions, or some combination of the two, makes an

LTL-to-automaton algorithm superior. Intuitively, it makes sense that automaton size

may be positively correlated with the time required to analyze that automaton, but no

previous study objectively showed this was, in fact, the case. It was also not previ-

ously clear what times, precisely, we should be measuring. As we explained in Chap-
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ter 2, there are many different stages in the execution of a model checker. Previous

experimental results did not measure these separately or account for the sensitivity

of the time required to complete each stage to influences unrelated to the automata

being analyzed. We are the first to evaluate LTL-to-automaton algorithms based on

performance time and not based on automaton size as a proxy for performance time.

• For LTL satisfiability checking we measure end-to-end performance time, i.e.

given an automaton, how long does it take the model checker to perform the

satisfiability check. Note that while this is the best measurement to answer the

question of satisfiability checking performance, our conclusions about satisfia-

bility checking performance may or may not be applicable to model checking

performance.

• For model checking we measure the model checking time. Precisely, we mea-

sure the time for the model checker to perform the nonemptiness check, inde-

pendently of any other preprocessing steps that occur beforehand. Note that an

LTL-to-automaton algorithm that takes longer to create the automaton from the

LTL formula, or creates an automaton that takes longer to compile, etc. may

still perform “better” than one that requires less time for all of these preprocess-

ing steps if the time required for the nonemptiness check is less. We are the first

to evaluate LTL-to-automaton algorithms for model checking in this way. Our

reasoning for this performance evaluation is that, while system models change

frequently due to debugging and design changes, specifications change much

less frequently. So, if we can can preprocess the specifications once and use

them for model checking many times, the amortized cost is the least when the

model checking time is minimized. Note that this capability is currently not

available in the Spin model checker, which requires recompiling the specifica-
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tions each time we rerun the model checker.

2. How do we compare LTL-to-automaton algorithms fairly? A good set of bench-

marks should be challenging in diverse ways. Measuring the performance of LTL sat-

isfiability checking enables us to benchmark the performance of LTL model checking

tools, and, more specifically, of LTL translation tools. By using large LTL formulas,

we offer challenging model-checking benchmarks to both the explicit and symbolic

automaton domains. LTL formulas previously used for evaluating LTL translation

tools are usually too small to offer challenging benchmarks. In part, this was because

it was assumed that these formulas would be evaluated with respect to large system

models. As modern safety-critical systems increase in size and complexity so too

do the specifications describing safe system behaviors. Thus, studying satisfiability

of large and complex LTL formulas is quite appropriate. Also, real specifications

typically consist of many temporal properties, whose conjunction ought to be satis-

fiable. Scalability plays an important role in our experimental evaluations; our goal

is to challenge LTL-to-automaton translations with large formulas and state spaces.

We advocate the use of a wide variety of benchmark formulas that are designed to

cover the range of possible formula constructions, address the question of scalabil-

ity, address common patterns and combinations of operators that appear frequently in

real-life specifications, and aid in checking the correctness of the generated automata.

Related Work Related software, called lbtt,1 provides an LTL-to-Büchi explicit trans-

lator testbench and environment for basic profiling. The lbtt tool performs simple con-

sistency checks on an explicit tool’s output automata, accompanied by sample data when

inconsistencies in these automata are detected [184]. Whereas the primary use of lbtt is

1www.tcs.hut.fi/Software/lbtt/
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to assist developers of explicit LTL translators in debugging new tools or comparing a pair

of tools, we compare performance with respect to LTL-to-automaton translations across a

host of different tools, both explicit and symbolic.

3.2 Counter Formulas

Pre-translation rewriting is highly effective for many randomly-generated formulas, but

ineffective for structured formulas [185, 133]. To measure performance on scalable, non-

random formulas we tested LTL-to-automaton translation algorithms on formulas that de-

scribe n-bit binary counters with increasing values of n. These formulas are irreducible by

pre-translation rewriting, uniquely satisfiable, and represent a predictably-sized state space.

Whereas our measure of correctness for all other formulas is a conservative check that the

automata produced for satisfiable LTL formulas are found by a model checker to be sat-

isfiable, we check for precisely the unique counterexample for each counter formula. We

introduce four constructions of binary counter formulas, varying two factors: number of

variables and nesting of X’s.

We can represent a binary counter using two variables: a counter variable and a marker

variable to designate the beginning of each new counter value. Alternatively, we can use

3 variables, adding a variable to encode carry bits, which eliminates the need for U-

connectives in the formula. We can nest X’s to provide more succinct formulas or express

the formulas using a conjunction of unnested X-sub-formulas.

Let b be an atomic proposition. Then a computation π over b is a word in (2{b})ω =

{0, 1}ω. By dividing π into blocks of length n, we can view π as a sequence of n-bit values,

denoting the sequence of values assumed by an n-bit counter starting at 0, and incrementing

successively by 1. To simplify the formulas, we represent each block b0, b1, . . . , bn−1 as

having the most significant bit on the right and the least significant bit on the left. For
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a = 1 & b = 0 a = 0 & b = 0 a = 1 & b = 1 a = 0 & b = 0

a = 1 & b = 0

a = 0 & b = 1a = 1 & b = 1a = 0 & b = 1

a = 1 & b = 0

Figure 3.1 : Example of a 2-bit binary counter automaton (where a = marker; and b =

counter).

example, for n = 2 the b blocks cycle through the values 00, 10, 01, and 11. Figure 3.1

pictures this 2-bit binary counter automaton. For technical convenience, we use an atomic

proposition m to mark the blocks. That is, we intend the marker variable m to hold at point

i precisely when i = 0 mod n.

For π to represent an n-bit counter, the following properties need to hold:

1) The marker consists of a repeated pattern of a 1

followed by n-1 0’s.

2) The first n bits are 0’s.

3) If the least significant bit is 0, then it is 1 n steps later

and the other bits do not change.

4) All of the bits before and including the first 0

in an n-bit block flip their values in the next block;

the other bits do not change.

For n = 4, these properties are captured by the conjunction of the following formulas:

1. (m) && ( [](m -> ((X(!m)) && (X(X(!m)))
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&& (X(X(X(!m))))

&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))

3. []( (m && !b) ->

( X(X(X(X(b)))) &&

X ( ( (!m) &&

(b -> X(X(X(X(b))))) &&

(!b -> X(X(X(X(!b))))) ) U m ) ) )

4. [] ( (m && b) ->

( X(X(X(X(!b)))) &&

(X ( (b && !m && X(X(X(X(!b))))) U

(m ||

(!m && !b && X(X(X(X(b)))) &&

X( ( !m && (b -> X(X(X(X(b))))) &&

(!b -> X(X(X(X(!b))))) ) U

m ) ) ) ) ) ) )

Note that this encoding creates formulas of length O(n2). A more compact encoding

results in formulas of length O(n). For example, we can replace formula (2) above with:

2. ((!b) && X((!b) && X((!b) && X(!b))))

We can eliminate the use ofU-connectives in the formula by adding an atomic propo-

sition c representing the carry bit. The required properties of an n-bit counter with carry

are as follows:

1) The marker consists of a repeated pattern of a 1

followed by n-1 0’s.

2) The first n bits are 0’s.
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3) If m is 1 and b is 0 then c is 0 and n steps later b is 1.

4) If m is 1 and b is 1 then c is 1 and n steps later b is 0.

5) If there is no carry,

then the next bit stays the same n steps later.

6) If there is a carry,

flip the next bit n steps later and adjust the carry.

For n = 4, these properties are captured by the conjunction of the following formulas.

1. (m) && ( [](m -> ((X(!m)) && (X(X(!m)))

&& (X(X(X(!m))))

&& (X(X(X(X(m))))))))

2. (!b) && (X(!b)) && (X(X(!b))) && (X(X(X(!b))))

3. [] ( (m && !b) -> (!c && X(X(X(X(b))))) )

4. [] ( (m && b) -> (c && X(X(X(X(!b))))) )

5. [] (!c && X(!m)) ->

( X(!c) && (X(b) -> X(X(X(X(X(b)))))) &&

(X(!b) -> X(X(X(X(X(!b)))))) )

6. [] (c -> ( ( X(!b) ->

( X(!c) && X(X(X(X(X(!b))))) ) ) &&

( X(c) && X(X(X(X(X(b))))) ) ))

The counterexample trace for a 4-bit counter with carry is given in Table 3.1. (The

traces of m and b are, of course, the same as for counters without carry.)

3.3 Pattern Formulas

We further investigated the problem space by evaluating LTL-to-automaton algorithms us-

ing scalable pattern formulas. These formulas are comprised of regular patterns of combi-

nations of temporal operators that were chosen either because they occur commonly in real
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A 4-bit Binary Counter
m 1000 1000 1000 1000 1000 1000
b 0000 1000 0100 1100 0010 1010
c 0000 1000 0000 1100 0000 1000

m 1000 1000 1000 1000 1000 1000
b 0110 1110 0001 1001 0101 1101
c 0000 1110 0000 1000 0000 1100

m 1000 1000 1000 1000 1000 . . .
b 0011 1011 0111 1111 0000 . . .
c 0000 1000 0000 1111 0000 . . .

Table 3.1 : The counterexample trace for a 4-bit counter, including marker bit m, binary
counter stream b, and carry bit c.

specifications or because they are known to be particularly difficult when they do occur.

The scalable nature of this set of benchmarks makes them particularly nice for evaluating

the scalability of the various algorithms under test.

For LTL satisfiability checking we evaluate the performance of LTL-to-automaton

translation algorithms on temporally-complex formulas by testing them on eight patterns

of scalable formulas defined by [61] plus one we defined and call R2.

S (n) =

n∧
i=1

Gpi, E(n) =

n∧
i=1

F pi, Q(n) =
∧

(F pi ∨ Gpi+1),

U(n) = (. . . (p1 U p2)U . . .)U pn, U2(n) = p1 U (p2 U (. . . pn−1 U pn) . . .),

C1(n) =

n∨
i=1

GF pi, C2(n) =

n∧
i=1

GF pi.

R(n) =

n∧
i=1

(GF pi ∨ FGpi+1), R2(n) = (. . . (p1 R p2) R . . .) R pn.

For model checking of safety properties we evaluate LTL-to-automaton translation

algorithms using three challenging scalable safety formula patterns. Note that E is the
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negation of the formula from [52, 61].

E(n) = ¬

 n∧
i=1

F pi

 ,
X∗1(n) =

n∨
i=1

(�Xpi ∨ X�pi+1),

M2(n) = �
n∨

i=1

n∨
j=i+1

(¬(pi ∧ p j)).

3.4 Random Formulas

Daniele, Guinchiglia, and Vardi previously addressed the problem of poor benchmarks for

LTL-to-automaton algorithms in 1999 and set the original standard for LTL-to-automaton

evaluation [132]. In order to cover as much of the problem space as uniformly possible,

they defined a set of randomly-generated formulas varying:

• a number N of propositional variables

• a length L of the generated LTL formulas

• a number F of generated formulas

• a probability P of generating the temporal operatorsU and R.

We repeat their test, expanding the ranges of L and F to account for the increase in process-

ing power and LTL-to-automaton translation performance since 1999, as shown in Figure

3.2.
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• sets of 500 randomly-generated formulas

• Scaling:

1. number of variables [1, 2, 3]

2. formula length [5, 10, . . . , 200]

3. probability of occurrence of temporal operators [0.5]

– Boolean operators: !, &&, ||
– Temporal operators: X (next time), U (strong until), R (implemented as

!(!aU !b))

Figure 3.2 : Composition of random formula benchmarks.

Thus, in order to cover as much of the problem space as uniformly as possible, we

tested sets of 500 randomly-generated formulas varying the formula length and number of

variables as in [132]. We randomly generated sets of 500 formulas varying the number

of variables, N, from 1 to 3, and the length of the formula, L, from 5 up to 200. We

set the probability of choosing a temporal operator P = 0.5 to create formulas with both

a nontrivial temporal structure and a nontrivial Boolean structure. Other choices were

decided uniformly. We note that the distribution of run times has a high variance and

contains many outliers; this lead to our decision to generate large sets of random formulas

and measure the median run times over each set. All formulas were generated prior to

testing, so each LTL-to-automaton translation algorithm was run on the same formulas.

While we made sure that, when generating a set of formulas of length L, every formula was

exactly of length L and not up to L, we did find that the formulas were frequently reducible

to simpler formulas via pre-translation rewriting. Conversely, subformulas of the form

ϕ R ψ had to be expanded to ¬(¬ϕ U ¬ψ) since most algorithms for LTL-to-automaton

translation do not implement the R operator directly.
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3.5 Scalable Universal Model

In all of our benchmark tests, the system model is a universal model, enumerating all

possible traces over Prop. This universal model is defined differently in the explicit and

symbolic domains.

3.5.1 Explicit Universal Model

For explicit-state model-checking benchmarks, our universal system model is a Promela

(PROcess MEta LAnguage) program that explicitly enumerates all possible evaluations

over Prop and employs nondeterministic choice to pick a new valuation at each time step.

For example, when Prop = {A, B}, the Promela model is:

bool A,B;
/* define an active procedure

to generate values for A and B */
active proctype generateValues()
{

do
:: atomic{ A = 0; B = 0; }
:: atomic{ A = 0; B = 1; }
:: atomic{ A = 1; B = 0; }
:: atomic{ A = 1; B = 1; }
od

}

We use the atomic{} construct to ensure that the Boolean variables change value

in one unbreakable step. When combining formulas with this model, we also preceded

each formula with an X-operator to skip Spin’s assignment upon declaration and achieve

nondeterministic variable assignments in the initial time steps of the test formulas. Note

that the size of this model is exponential in the number of atomic propositions. It is also

possible to construct a model that is linear in the number of variables like this:2

2We thank Martin De Wulf for asking this question.
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bool A,B;
active proctype generateValues()
{

do
:: atomic{

if
:: true -> A = 0;
:: true -> A = 1;

fi;
if

:: true -> B = 0;
:: true -> B = 1;

fi;
}
od

}

For LTL satisfiability checking We use the exponentially-sized model for benchmark-

ing explicit LTL-to-automaton translators since, in all of our counter and random formulas,

there are never more than three variables. For these small numbers of variables, our (ex-

ponentially sized) model is simpler and contains fewer lines of code than the equivalent

linearly sized model. When we did scale the number of variables for the pattern formula

benchmarks, we kept the same model for consistency. We checked that the scalability of

the universal model we chose did not affect our results. For example, all of the explicit

LTL-to-automaton translation tool tests terminated early enough in our scaling sequence

of pattern formula benchmarks that the size of the universal model was still reasonably

small, usually 8 variables or less. (At 8 variables, our model has 300 lines of code, whereas

the linearly sized model we show here has 38.) Furthermore, the timeouts and errors we

encountered when comparing explicit-state LTL-to-automaton translation tools occurred in

the LTL-to-automaton stage of the processing. All of the LTL-to-automaton implemen-

tations in our study spent considerably more time and memory on this stage, making the

choice of universal Promela model in the counter and pattern formula benchmarks irrel-



www.manaraa.com

110

evant: the LTL-to-automaton translation tools consistently terminated before the call to

Spin to combine their automata with the Promela model. However, we must note that the

choice of the format of the universal model may have significant impact for other studies,

for example studies over benchmark formulas with more variables.

Checking Against Explicit State Universal Models Each test was performed in two

steps. First, we applied every LTL-to-automaton translation tool under test to the input

LTL formula and ran them with the standard flags recommended by the tools’ authors,

plus any additional flag needed to specify that the output automaton should be in Promela.

Second, each output automaton, in the form of a Promela never claim, was checked by

Spin. (Spin never claims are descriptions of behaviors that should never happen.) In this

role, Spin serves as a search engine for each of the LTL translation tools; it takes a never

claim and checks it for nonemptiness in conjunction with an input model.3 In practice, this

means we call spin -a on the never claim and the universal model to compile these

two files into a C program, which is then compiled using gcc and executed to complete the

verification run.

3.5.2 Symbolic Universal Model

While very similar to each other, our symbolic universal models take slightly different

forms depending on the input language for the symbolic model checking tool being used.

SMV For the symbolic model checkers CadenceSMV and NuSMV, to check whether an

LTL formula ϕ is satisfiable, we model check ¬ϕ against a universal SMV model. For ex-

3An interesting alternative to Spin’s nested depth-first search algorithm [56] would be to use SPOT’s SCC-
based search algorithm [186]. We did not do this because SPOT’s model checking platform is not complete
at this time but this option is considered for future work.
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ample, if ϕ = (X(aU b)), we provide the following inputs to NuSMV and CadenceSMV.4

NuSMV:

MODULE main
VAR

a : boolean;
b : boolean;

LTLSPEC !(X(a=1 U b=1))
FAIRNESS

1

CadenceSMV:

module main () {

a : boolean;
b : boolean;
assert !(X(a U b));
FAIR TRUE;

}

For LTL satisfiability checking, SMV negates the specification, ¬ϕ, symbolically com-

piles ϕ into Aϕ, and conjoins Aϕ with the universal model. If the automaton is not empty,

then SMV finds a fair path that satisfies the formula ϕ. In this way, SMV acts as both a

symbolic compiler and a search engine.

SAL-SMC We also chose to evaluate SAL-SMC. We used a universal model similar to

those for CadenceSMV and NuSMV. (In SAL-SMC, primes are used to indicate the values

of variables in the next state.) For example, if ϕ = (X(a U b)), we provide the following

input to SAL-SMC.

temp: CONTEXT =
BEGIN

main: MODULE =
BEGIN

OUTPUT
a : boolean,
b : boolean

INITIALIZATION

4In our experiments we used FAIRNESS to guarantee that the model checker returns a representation of
an infinite trace as counterexample.
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a IN {TRUE,FALSE};
b IN {TRUE,FALSE};

TRANSITION
[ TRUE -->

a’ IN {TRUE,FALSE}; %next time a is in true or false
b’ IN {TRUE,FALSE}; %next time b is in true or false

]

END; %MODULE

formula: THEOREM main |- ((((G(F(TRUE)))))
=> (NOT(((X (a U b))))));

END %CONTEXT

For LTL satisfiability checking, SAL-SMC negates the specification, ¬ϕ, directly trans-

lates ϕ into Aϕ, and conjoins Aϕ with the universal model. Like the SMVs, SAL-SMC then

searches for a counterexample in the form of a path in the resulting model. There is not

a separate command to ensure fairness in SAL-SMC models like those that appear in the

SMV models above.5 Therefore, we ensure SAL-SMC checks for an infinite counterexam-

ple by specifying our theorem as � ^(true)→ ¬ϕ.

3.6 Benchmarks for Model Checking of Safety Properties

We can specialize our benchmarks for effectively evaluating the efficiency of algorithms

for LTL-to-automata in the context of model checking of safety properties. We define two

major categories of model-checking benchmarks employing the Universal Model: one in

which we scale the model and one in which we scale the specifications.

5http://sal-wiki.csl.sri.com/index.php/FAQ#Does SAL have constructs for fairness.3F
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3.6.1 Model-Scaling Benchmarks

We choose a set of 14 typical safety formulas, taken from common specifications and ex-

amples in the literature, listed in Table 3.2.

0 �¬bad “Something bad never happens.”
1 �(request → Xgrant) “Every request is immediately followed by a

grant”
2 �(¬(p ∧ q)) Mutual Exclusion: “p and q can never happen

at the same time.”
3 �(p→ (XXXq)) “Always, p implies q will happen 3 time steps

from now.”
4∗ X((p ∧ q)Rr) “Condition r must stay on until buttons p and

q are pressed at the same time.”
5∗ X(�(p)) slightly modified intentionally safe formula

from [141]
6 �(q ∨ X�p) ∧ �(r ∨ X�¬p) accidentally safe formula from [141]

7∗ X([�(q∨^�p)∧�(r∨^�¬p)]∨�q∨�r) slightly modified pathologically safe formula
from [141]

8 �(p→ (q ∧ Xq ∧ XXq)) safety specification from [187]
9 (((((p0R(¬p1))R(¬p2))R(¬p3))R

(¬p4))R(¬p5))
Sieve of Erathostenes [188, 189]

10 (�((p0 ∧ ¬p1)→ (�¬p1 ∨ (¬p1U(p10 ∧
¬p1)))))

G.L. Peterson’s algorithm for mutual exclu-
sion algorithm [190, 191, 188, 192, 189]

11 (�(¬p0→ ((¬p1Up0) ∨ �¬p1))) CORBA General Inter-Orb Protocol [193,
189]

12 ((�(p1 → �(¬p1 → (¬p0 ∧ ¬p1)))) ∧
(�(p2 → �(¬p2 → (¬p0 ∧ ¬p1)))) ∧
(�¬p2 ∨ (¬p2Up1)))

GNU i-protocol, also called iprot [194, 192,
189]

13 ((�(p1 → �(¬p1 → (¬p0 ∧ ¬p1)))) ∧
(�(p2 → �(¬p2 → (¬p0 ∧ ¬p1)))) ∧
(�¬p2 ∨ (¬p2Up1)))

Sliding Window protocol [195, 189]

Table 3.2 : Industrial safety formulas used in model-scaling benchmarks.

For each of the formulas in our set, we model check against a series of linearly-sized

universal models, as described in Section 3.5.1, starting with the 10-variable model and
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scaling up the number of variables in the model, thereby exponentially increasing its state

space. Starred formulas are checked against universal models that set all variables to true

first like this:

bool p,q;
active proctype generateValues()
{

do
:: atomic{

if
:: true -> p = 1;
:: true -> p = 0;

fi;
if

:: true -> q = 1;
:: true -> q = 0;

fi;
}
od

}

For our experiments, we name the specifications in Table 3.2, resulting in the following list

of benchmarks: {SomethingBadNeverHappens, RequestGrant, MutualExclusion, Three-

TimeSteps, ButtonPush, IntentionallySafe, AccidentallySafe, PathologicallySafeModified,

Monitor, erathostenes-80-6, petersonN, giop3, iprot, sliding window}.

3.6.2 Formula-Scaling Benchmarks

For our formula-scaling benchmarks, we model check each formula against a universal

model with 30 variables and 1,073,741,824 states. We employ two types of formula-scaling

benchmarks: pattern and random. We scale each of the formulas until model checking

becomes unachievable within machine timeout.
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pattern

We use three scalable pattern safety formulas. These patterns generate safety formulas that

are easy to encode but difficult to model check, making them good benchmarks for evaluat-

ing the effects of different LTL-to-automaton encodings on model-checking performance.

Note that E is the negation of the formula from Chapter 3.3 and [52, 61]. Again, starred

formulas are checked against a universal model that sets all variables to true first.

E(n) = ¬

 n∧
i=1

F pi

 ,
X∗1(n) =

n∨
i=1

(�Xpi ∨ X�pi+1),

M2(n) = �
n∨

i=1

n∨
j=i+1

(¬(pi ∧ p j)).

random

We generated two sets each of 500 m-length safety specifications over n atomic proposi-

tions, for m in {5, 10, 15, 20, 25} and n in {2..6}. (In total, there are 25,000 random formulas

in these two benchmark sets, combined.) We set the probability of choosing a tempo-

ral operator P = 0.5. For the first set, we generate syntactic safety formulas, allowing

negation only directly before atomic propositions and limiting the temporal operators to

{X,G,R}. For the second set, rather than restricting ourselves to syntactic safety formulas,

we generate each specification randomly over the full syntax of LTL. We then check if the

generated specification represents a safety property using the SPOT command ltl2tgba

-O, adding the specification to our test set if so and rejecting it if not.
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3.7 Checking Correctness

Nearly always, when a new algorithm for LTL-to-automaton translation is created, the cor-

responding publication contains a theoretical proof of the algorithm’s correctness. How-

ever, before our work, no previous evaluation had considered the correctness of the corre-

sponding tool implementing the algorithm and no empirical evaluation had considered any

measurement of correctness. While the one previous LTL-to-automata evaluation platform,

lbtt, is helpful in testing whether an explicit LTL-to-automaton algorithm is implemented

consistently via consistency checks that the output matches some expectation, it does not

check whether an LTL-to-automaton algorithm is correct like we do. For example, lbtt

uses only randomly-generated formulas; it does not use formulas with a known counterex-

ample or minimum state count, like our counter formulas, which can provide invaluable

sanity checks. Also lbtt can only perform checks on explicit-state automata in one par-

ticular format. It could not be used to compare the results of checking explicit SPOT

automata to NuSMV and CadenceSMV symbolic automata, for example, which is how we

uncovered the subtle bug that used to be in SPOT’s translation at the time we conducted

our experiments. (Following our study, the bug we found was corrected by the tool author,

who also integrated our benchmarks into SPOT’s test suite. Note that SPOT had previously

been checked using lbtt, which did not locate the bug.)

Unfortunately, it is occasionally the case that some automata perform well because they

are wrong, i.e. for the given LTL formula ϕ and the constructed Büchi automaton Aϕ =〈
Q,Σ, δ, q0, F

〉
, Lω(Aϕ) is not exactly |= ϕ. Constructing automata from LTL formulas is

hard; it is easy to make mistakes in the implementation. Therefore, empirically examining

the correctness of LTL-to-automaton implementations is important.

A major reason why previous work did not consider the evaluation of correctness is be-

cause it was not clear how correctness might be measured empirically. Certainly, for short
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LTL formulas and small automata it is possible to check the correctness of the automata

produced by hand, but most formulas used for verification in practice are too complex to

analyze manually. Furthermore, a major reason for utilizing a model checker in verifica-

tion is the automated nature of the tool; it is only necessary for system designers to learn

the specification logic, not how the specifications are utilized inside the LTL-to-automaton

translator and model checker after they are written.

We consider the automata produced by an LTL-to-automaton tool to be correct with

very high confidence if:

1. In the context of LTL satisfiability checking, the back-end model checker always

yields the one correct binary counter counterexample, for encodings of all four of

our binary counter benchmark formulas, for all lengths of these formulas that can be

tested before machine timeout.

2. The result of checking the automaton, “SAT” or “UNSAT” in the case of LTL sat-

isfiability checking and “valid” or “violated” in the case of model checking, always

matches the results of checking the automata produced by other LTL-to-automaton

tools for the same formula, for all of the formulas in our model-scaling benchmarks

and pattern and random formula benchmark sets.

3.8 Measurement and Analysis

Hooker also highlights the common fallacy introduced by competitive testing [183]: timing

data tells us which algorithm is faster but not why. Indeed, timing data is often heavily in-

fluenced by factors including differences in the programming language used, whether it is

an interpreted or compiled language, and the quality of interpreters or compilers available.

Also, differences in the coding skills of the implementer, the level of tuning or algorithm

specialization included, and the effort invested in creating very efficient code can dramat-
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ically impact timing data despite being unrelated to the quality of the algorithm under

implementation.

To address this problem, we measure LTL-to-automaton time separately from the time

required to model check the produced automaton; this avoids the evils of competitive test-

ing by isolating the influence of coding efficiency of the LTL-to-automaton translator from

the performance of the automaton it produces. In effect, it allows us to judge the quality of

the LTL-to-automaton algorithm independently from how the algorithm designers imple-

mented it since the automata used as input to the back-end model checkers are all in the

same language and format.

We also always examine the median times as well as the mean and standard devia-

tion for all timing data measured in this thesis. We actually found the medians to be a

better measure of performance times than the means in the experimental evaluations we

conducted as, for all randomly-generated benchmarks, we encountered high standard devi-

ations in the times measured and for all other benchmarks, we encountered higher-than-

anticipated standard deviations. For example, benchmarking the same pattern formula

against the same universal model multiple times produces different timing data, which may

vary by several seconds when the benchmark formula is large. In the following chapters,

we graph median timing data, which we found to provide a clearer picture of the trends in

our data.

To address the widely-held belief that small automaton size may be positively corre-

lated with fast performance, we measure the number of states and transitions of generated

automata. When a counterexample is returned by the back-end model checker, we also

record the length of the counterexample returned.

When we are comparing the influence on model checking times of algorithms for creat-

ing explicit automata from LTL formulas in Chapter 6, we further refine our measurements.

The model checker Spin, which we used to model check the generated never claims we
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are comparing, first translates each never claim from the input language Promela into

C, then compiles the generated C code into binary, and finally executes the binary exe-

cutable to perform the emptiness check. We measure each of these three stages of the

model checker independently to further isolate the time required to actually perform the

emptiness check from any biases that may be introduced, for example, from optimized

code for translating more common Promela statements to C, or from inefficiencies in the

native gcc compiler.

In summary, our analysis includes the following measurements, wherever applicable:

• measurement of the size or complexity of the benchmark being used, such as number

of propositions in the formula, or any other distinguishing information

• number of formulas in the benchmark

• mean, standard deviation, and median number of states in the generated automaton

(where measurable)

• mean, standard deviation, and median number of transitions in the generated automa-

ton (where measurable)

• mean, standard deviation, and median LTL-to-automaton time

• for satisfiability checking: mean, standard deviation, and median back-end analysis

time

• for model checking (with Spin):

– mean, standard deviation, and median Promela→C translation time

– mean, standard deviation, and median C→binary compilation time

– mean, standard deviation, and median model checking time
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• mean, standard deviation, and median counterexample length (over the formulas for

which a counterexample is returned)

• total number and proportion of “valid” vs “violated” formulas

• total number and proportion of correct automata, as defined in Section 3.7
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Chapter 4

LTL Satisfiability Checking

4.1 Introduction

The application of model-checking tools to complex systems involves a nontrivial step of

creating a mathematical model of the system and translating the desired properties into a

formal specification. When the model does not satisfy the specification, model-checking

tools accompany this negative answer with a counterexample that points to an inconsistency

between the system and the desired behaviors. It is often the case, however, that there is an

error in the system model or an error in the formal specification. Such errors may not be

detected when the answer of the model-checking tool is positive: while a positive answer

does guarantee that the model satisfies the specification, the answer to the real question,

namely, whether the system has the intended behavior, may be different.

Writing formal specifications is a difficult task, which is prone to error just as imple-

mentation development is error prone. However, formal verification tools offer little help in

debugging specifications other than standard vacuity checking. Clearly, if a formal property

is valid, then this is certainly due to an error. Similarly, if a formal property is unsatisfiable,

that is, true in no model, then this is also certainly due to an error. Even if each individual

property written by the specifier is satisfiable, their conjunction may very well be unsatisfi-

able. Recall that a logical formula ϕ is valid iff its negation ¬ϕ is not satisfiable. Thus, as a

necessary sanity check for debugging a specification, model-checking tools should ensure

that both the specification ϕ and its negation ¬ϕ are satisfiable. (For a different approach to

debugging specifications, see [118].)
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Recall from Chapter 2.3 that we can relate LTL satisfiability checking to LTL model

checking. Suppose we have a universal model M that generates all computations over its

atomic propositions; that is, we have that Lω(M) = (2Prop)ω. For an LTL formula ϕ, we now

have that M 6|= ¬ϕ if and only if ϕ is satisfiable. Recall that to check whether M |= ¬ϕ we

first negate the specification (¬¬ϕ = ϕ), then the model checker searches for an accepting

run of the synchronous parallel composition of M and ϕ and returns a counterexample if

one exists. Thus, ϕ is satisfiable precisely when the model checker finds a counterexample

and that counterexample represents a satisfying computation of ϕ. We argue that it is easy

and necessary to add a satisfiability-checking feature to LTL model-checking tools.

There has been extensive research over the past decade into explicit translation of LTL

to automata [127, 132, 185, 196, 138, 135, 134, 131, 133, 136, 60], but it is difficult to

get a clear sense of the state of the art from a review of the literature. Measuring the

performance of LTL satisfiability checking enables us to benchmark the performance of

LTL model-checking tools, and, more specifically, of LTL-to-automaton translation tools.

We report here on an experimental investigation of LTL satisfiability checking via a

reduction to model checking. By using large LTL formulas, we offer challenging bench-

marks to both explicit and symbolic model checkers. In the symbolic domain, we used

CadenceSMV, NuSMV, and SAL-SMC both to translate our benchmark formulas into sym-

bolic automata and to search for a satisfying counterexample. In the explicit domain, we

used Spin as the back-end search engine, and we tested essentially all publicly available

LTL-to-automaton translation tools. We used a wide variety of benchmark formulas as

described in Chapter 3, either generated randomly, as in [132], or using a scalable pattern

(e.g.,
∧n

i=1 pi). LTL formulas typically used for evaluating LTL translation tools are usually

too small to offer challenging benchmarks. Note that real specifications typically consist

of many temporal properties, whose conjunction ought to be satisfiable. Thus, studying

satisfiability of large LTL formulas is quite appropriate.
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Our experiments resulted in two major findings. First, most LTL translation tools are

research prototypes and cannot be considered industrial quality tools. Many of them are

written in scripting languages such as Perl or Python, which has drastic negative impact on

their performance. Furthermore, as we increase the size and difficulty of benchmark LTL

formulas these tools generally degrade gracelessly, often yielding incorrect results with no

warning. Among all of the explicit LTL-to-automaton tools we tested, only SPOT can be

considered an industrial quality tool. Second, when it comes to LTL satisfiability checking,

the symbolic approach is clearly superior to the explicit approach. Even SPOT, the best

explicit LTL translator in our experiments, was rarely able to compete effectively against

the symbolic tools. This result is consistent with the comparison of explicit and symbolic

approaches to modal satisfiability [197, 198], but is somewhat surprising in the context of

LTL satisfiability in view of [199].

Related software, called lbtt,1 provides an explicit LTL-to-Büchi automaton transla-

tor testbench and an environment for basic profiling. The lbtt tool performs simple con-

sistency checks on an explicit tool’s output automata, accompanied by sample data when

inconsistencies in these automata are detected [184]. While lbtt is useful for assisting

developers of explicit LTL translators in debugging new tools or comparing a pair of tools,

its functionality is not comparable to an analysis using our rigorous benchmark suite. For

example we compare explicit and symbolic tools to each other and measure aspects that

lbtt cannot, such as correctness, as explained in Chapter 3.7.

This chapter is structured as follows. In Section 4.2, we describe the tools studied in

our investigation. We define our experimental method in Section 4.3, and detail our four

major findings in Sections 4.4, 4.5, 4.6, and 4.7. We conclude with a discussion in Section

4.8.

1www.tcs.hut.fi/Software/lbtt/
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4.2 Tools for LTL-to-Automata

In total, we tested eleven LTL compilation algorithms from nine research tools. To offer

a broad, objective picture of the current state of the art, we tested the algorithms against

several different sequences of benchmarks and compared, where appropriate, the size of

generated automata in terms of numbers of states and transitions, translation time, model-

analysis time, and correctness of the output.

4.2.1 Explicit Tools

The explicit LTL model checker Spin [55] accepts either LTL properties, which are trans-

lated internally into Büchi automata, or Büchi automata for complemented properties (called

“never claims”). The states and transitions of these Büchi automata are explicitly repre-

sented in never claims. The model checking algorithm used by Spin appears in Chapter

2.8. We tested Spin with Promela (PROcess MEta LAnguage) never claims produced

by several LTL translation algorithms. (As Spin’s built-in translator is dominated by TMP,

we do not show results for this translator.) The algorithms studied here represent all tools

publicly available in 2006, as described in Table 4.1.

We provide here short descriptions of the tools and their algorithms, detailing aspects

that may account for our results. We also note that aspects of implementation including

programming language, memory management, and attention to efficiency, seem to have

significant effects on tool performance.

Classical Algorithms Following [40], the first optimized LTL translation algorithm was

described in [131]. The basic optimization ideas were: (1) generate states by demand only,

(2) use node labels rather than edge labels to simplify translation to Promela, and (3) use

a generalized Büchi acceptance condition so eventualities can be handled one at a time.

The resulting generalized Büchi automaton (GBA) is then “degeneralized” or translated
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Explicit Automata Construction Tools

LTL2AUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Daniele–Guinchiglia–Vardi)
Implementations (Java, Perl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .LTL2Buchi, Wring

LTL2BA (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Oddoux–Gastin)

LTL2Buchi (Java) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Giannakopoulou–Lerda)

LTL→ NBA (Python) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Fritz–Teegen)

Modella (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Sebastiani–Tonetta)

SPOT (C++) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Duret-Lutz–Poitrenaud–Rebiha–Baarir–Martinez)

TMP (SML of NJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Etessami)

Wring (Perl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Somenzi–Bloem)

Table 4.1 : List of tools for translating LTL formulas into explicit automata.

to a BA. LTL2AUT improved further on this approach by using lightweight propositional

reasoning to generate fewer states [132]. We tested two implementations of LTL2AUT, one

included in the Java-based LTL2Buchi tool and one included in the Perl-based Wring tool.

TMP2 [185] and Wring3 [133] each extend LTL2AUT with three kinds of additional

optimizations. First, in the pre-translation optimization, the input formula is simplified us-

ing Negation Normal Form (NNF) and extensive sets of rewrite rules that differ between

the two tools; for example TMP adds rules for left-append and suffix closure. Second,

mid-translation optimizations tighten the LTL-to-automaton translation algorithms. TMP

optimizes an LTL-to-GBA-to-BA translation, while Wring performs an LTL-to-GBA trans-

lation utilizing Boolean optimizations for finding minimally-sized covers. Third, the re-

sulting automata are minimized further during post-translation optimization. TMP mini-

2We used the binary distribution called run delayed trans 06 compilation.x86-linux.
www.bell-labs.com/project/TMP/

3Version 1.1.0, June 21, 2001. www.ist.tugraz.at/staff/bloem/wring.html
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mizes the resulting BA by simplifying edge terms, removing “never accepting” nodes and

fixed-formula balls, and applying a fair simulation reduction variant based on partial-orders

produced by iterative color refinement. Wring uses forward and backward simulation to

minimize transition- and state-counts, respectively, merges states, and performs fair set re-

duction via strongly connected components. Wring halts translation with a GBA, which

we had to degeneralize.

LTL2Buchi4 [135] optimizes the LTL2AUT algorithm by initially generating a transition-

based generalized Büchi automaton (TGBA) rather than a node-labeled BA, to allow for

more compaction based on equivalence classes, contradictions, and redundancies in the

state space. Special attention to efficiency is given during the ensuing translation to a

node-labeled BA. The algorithm incorporates the formula rewriting and BA-reduction op-

timizations of TMP and Wring, producing automata with less than or equal to the number

of states and fewer transitions.

Modella5 focuses on minimizing the nondeterminism of the property automaton in an

effort to minimize the size of the product of the property and system model automata dur-

ing verification [136]. If the property automaton is deterministic, then the number of states

in the product automaton will be at most the number of states in the system model. Thus,

reducing nondeterminism is a desirable goal. This is accomplished using semantic branch-

ing, or branching on truth assignments, rather than the syntactic branching of LTL2AUT.

Modella also postpones branching when possible.

Alternating Automata Tools Instead of the direct translation approach of [40], an alter-

native approach, based on alternating automata, was proposed in [200]. In this approach,

4Original Version distributed from http://javapathfinder.sourceforge.net/; description:
http://ti.arc.nasa.gov/profile/dimitra/projects-tools/\#LTL2Buchi

5Version 1.5.8.1. http://www.science.unitn.it/˜stonetta/modella.html
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the LTL formula is first translated into an alternating Büchi automaton, which is then trans-

lated into a nondeterministic Büchi automaton.

LTL2BA6 [134] first translates the input formula into a very weak alternating automaton

(VWAA). It then uses various heuristics to minimize the VWAA, before translating it into a

GBA. The GBA in turn is minimized before being translated into a BA, and finally the BA

is minimized further. Thus, the algorithm’s central focus is on optimization of intermediate

representations through iterative simplifications and on-the-fly constructions.

LTL→NBA7 follows a similar approach to that of LTL2 BA [196]. Unlike the heuris-

tic minimization of the intermediate VWAA used in LTL2BA, LTL→NBA uses a game-

theoretic minimization based on utilizing a delayed simulation relation for on-the-fly sim-

plifications. The novel contribution is that that simulation relation is computed from the

VWAA, which is linear in the size of the input LTL formula, before the exponential blow-

up incurred by the translation to a GBA. The simulation relation is then used to optimize

this translation.

Back to Classics SPOT8 is the most recently developed LTL-to-Büchi optimized trans-

lation tool [137]. It does not use alternating automata, but borrows ideas from all the

tools described above, including reduction techniques, the use of TGBAs, minimizing non-

determinism, and on-the-fly constructions. It adds two important optimizations: (1) unlike

all other tools, it uses pre-branching states, rather than post-branching states (as introduced

in [127]), and (2) it uses BDDs [159] for propositional reasoning.

6Version 1.0; October 2001. http://www.lsv.ens-cachan.fr/˜gastin/ltl2ba/index.
php

7This original version is a prototype. http://www.ti.informatik.uni-kiel.de/˜fritz/
;download:http://www.ti.informatik.uni-kiel.de/˜fritz/LTL-NBA.zip

8Version 0.3. http://spot.lip6.fr/wiki/SpotWiki
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4.2.2 Symbolic Tools

Symbolic model checkers describe both the system model and property automaton symbol-

ically: states are viewed as truth assignments to Boolean state variables and the transition

relation is defined as a conjunction of Boolean constraints on pairs of current and next

states [64]. The model checker uses a BDD-based fixpoint algorithm [66, 37] to find a fair

path in the model-automaton product, as described in Chapter 2.10.

CadenceSMV9 [9] and NuSMV10 [15] both evolved from the original Symbolic Model

Verifier developed at CMU [201]. Both tools support LTL model checking via the transla-

tion of LTL to symbolic automata with FAIRNESS constraints, as described in [65]. FAIR-

NESS constraints specify sets of states that must occur infinitely often in any path. They

are necessary to ensure that the subformula ψ holds in some time step for specifications of

the form ϕ U ψ and ^ψ. CadenceSMV additionally implements heuristics that attempt to

reduce LTL model checking to CTL model checking in some cases [202].

SAL11 (Symbolic Analysis Laboratory), developed at SRI, is a suite of tools combining

a rich expression language with a host of tools for several forms of mechanized formal

analysis of state machines [203]. SAL-SMC (Symbolic Model Checker) uses LTL as its

primary assertion language and directly translates LTL assertions into Büchi automata,

which are then represented, optimized, and analyzed using BDDs. SAL-SMC also employs

an extensive set of optimizations during preprocessing and compilation, including partial

evaluation, common subexpression elimination, slicing, compiling arithmetic values and

operators into bit vectors and binary “circuits,” as well as optimizations during the direct

translation of LTL assertions into Büchi automata [73].

9Release 10-11-02p1. http://www.kenmcmil.com/smv.html
10Version 2.4.3-zchaff. http://nusmv.irst.itc.it/
11Version 2.4. http://sal.csl.sri.com
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4.3 Experimental Methods

4.3.1 Performance Evaluation

We ran all tests in the fall of 2006 on Ada, a Rice University Cray XD1 cluster.12 Ada is

comprised of 158 nodes with 4 processors (cores) per node for a total of 632 CPUs in pairs

of dual core 2.2 GHz AMD Opteron processors with 1 MB L2 cache. There are 2 GB of

memory per core or a total of 8 GB of RAM per node. The operating system is SuSE Linux

9.0 with the 2.6.5 kernel. Each of our tests was run with exclusive access to one node and

was considered to time out after 4 hours of run time. We measured all timing data using

the Unix time command.

4.3.2 Input Formulas

We benchmarked the tools against three types of scalable formulas: counter formulas

(Chapter 3.2), pattern formulas (Chapter 3.3), and random formulas (Chapter 3.4). Scala-

bility played an important role in our experiments, since the goal was to challenge the tools

with large formulas and state spaces. All tools were applied to the same formulas and the

results (satisfiable or unsatisfiable) were compared. The symbolic tools, which were always

in agreement, were considered as reference tools for checking correctness as described in

Chapter 3.7.

4.3.3 Explicit Tools

Each test was performed in two steps. First, we applied the translation tools to the input

LTL formula and ran them with the standard flags recommended by the tools’ authors,

plus any additional flag needed to specify that the output automaton should be in Promela.

Second, each output automaton in the form of a Promela never claim was checked by

12http://rcsg.rice.edu/ada/
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Spin. (Note that we do not negate ϕ before creating a corresponding never claim; Spin

never claims are descriptions of behaviors that should never happen so this test checks for

counterexamples satisfying ϕ.) In this role, Spin serves as a search engine for each of the

LTL translation tools; it takes a never claim and checks it for nonemptiness in conjunction

with an input model.13 In practice, this means we call spin -a on the never claim and

the universal model to compile these two files into a C program, which is then compiled

using gcc and executed to complete the verification run.

In all tests, the model was a universal Promela program, enumerating all possible traces

over Prop. We use the (exponentially-sized) explicit universal Promela model defined in

Chapter 3.5.1. We use two- and three-variable universal models for our counter formula

benchmarks and universal models with between one and three variables for our random

formula benchmarks. For our pattern formula benchmarks, as for the counter and random

benchmarks, the number of variables in the universal model used for any particular test was

equal to the number of variables in the LTL specification under test.

4.3.4 Symbolic Tools

We compare the explicit tools with three symbolic tools: CadenceSMV, NuSMV, and SAL-

SMC. To check whether an LTL formula ϕ is satisfiable, we model check ¬ϕ against a

symbolic universal model. In our benchmark tests, we use the symbolic universal models

defined in Chapter 3.5.2, matching the number of variables in the universal model to the

number of variables in the LTL formula under test.

All three symbolic model checkers negate the specification, ¬ϕ, symbolically compile

ϕ into Aϕ, and conjoin Aϕ with the given universal model. Then they search for a coun-

terexample in the form of a fair path in the resulting symbolic automaton. If the automaton

13An interesting alternative to Spin’s nested depth-first search algorithm [56] would be to use SPOT’s
SCC-based search algorithm [186].
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is not empty, the symbolic model checker under test returns a computation that satisfies

the formula ϕ. Note that CadenceSMV, NuSMV, and SAL-SMC all act as both a symbolic

LTL-to-automaton compiler and a search engine seeking a satisfying counterexample to

the input LTL formula. We do not separate these two actions as we do with the explicit

LTL-to-automaton tools, all of which produce Promela automata that are checked by Spin.

4.4 The Scalability Challenge

When checking the satisfiability of specifications we need to consider large LTL formulas.

Our experiments focus on challenging the tools with scalable formulas. Unfortunately,

most explicit tools do not rise to the challenge. In general, the performance of explicit

tools degrades substantially as the automata they generate grow beyond 1,000 states. This

degradation is manifested in both timeouts (our timeout bound was 4 hours per formula)

and errors due to memory management. This should be contrasted with symbolic BDD-

based tools, which routinely handle hundreds of thousands and even millions of nodes.

We illustrate this first with run-time results for counter formulas. We display each

tool’s total run time, which is a combination of the tool’s automaton generation time and

Spin’s model analysis time. We include only data points for which the tools provide correct

answers; we know all counter formulas are uniquely satisfiable. As is shown in Figures 4.1

and 4.2,14 SPOT is the only explicit tool that is somewhat competitive with the symbolic

tools. Generally, the explicit tools time out or die before scaling to n = 10, when the

automata have only a few thousands states; only a few tools passed n = 8.

We also found that SAL-SMC does not scale. Figure 4.3 demonstrates that, despite

median run times that are comparable with the fastest explicit-state tools, SAL-SMC does

not scale past n = 8 for any of the counter formulas. No matter how the formula is specified,

14We recommend viewing all figures online, in color, and magnified.
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Figure 4.1 : Graph showing the total processing time for 2-variable counter formulas when
correct results were obtained, based on the number of bits in the binary counter.
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SAL-SMC exits with the message “Error: vector too large” when the state space increases

from 28 × 8 = 2048 states at n = 8 to 29 × 9 = 4608 states at n = 9. SAL-SMC’s

behavior on pattern formulas was similar (see Figures 4.6 and 4.11). While SAL-SMC

consistently found correct answers, avoided timing out, and always exited gracefully, it

does not seem to be an appropriate choice for formulas involving large state spaces. (SAL-

SMC has the added inconvenience that it parses LTL formulas differently than all of the

other tools described in this chapter: it treats all temporal operators as prefix, instead of

infix, operators.)

Figures 4.4 and 4.5 show median automata generation and model analysis times for

random formulas. Most tools, with the exception of SPOT and LTL2BA, timeout or die

before scaling to formulas of length 60. The difference in performance between SPOT and
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LTL2BA, on one hand, and the rest of the explicit tools is quite dramatic. Note that up

to length 60, model-analysis time is negligible. SPOT and LTL2BA can routinely handle

formulas of up to length 150, while CadenceSMV and NuSMV scale past length 200 with

run times of a few seconds.

Figure 4.6 shows performance on the E pattern formulas. Recall that E(n) =
∧n

i=1^pi.

The minimally-sized automaton representing E(n) has exactly 2n states in order to remem-

ber which pi’s have been observed. (Basically, we must declare a state for every com-

bination of pi’s seen so far.) However, none of the explicit tools create minimally sized

automata. Again, we see all of the explicit tools do not scale beyond n = 10, which is

minimally 1024 states, in sharp contrast to the symbolic tools.

4.5 Graceless Degradation

Most explicit tools do not behave robustly and die gracelessly. When LTL2Buchi has diffi-

culty processing a formula, it produces over 1,000 lines of java.lang.StackOverflow

Error exceptions. LTL2BA periodically exits with “Command exited with non-zero status

1” and prints into the Promela file, “ltl2ba: releasing a free block, saw ’end of formula’.”

Python traceback errors hinder LTL→NBA. Modella suffers from a variety of memory er-

rors including *** glibc detected *** double free or corruption (out):

0x 55ff4008 ***. Sometimes Modella causes a segmentation fault and other times

Modella dies gracefully, reporting “full memory” before exiting. When used purely as an

LTL-to-automaton translator, Spin often runs for thousands of seconds and then exits with

non-zero status 1. TMP behaves similarly. Wring often triggers Perl “Use of freed value

in iteration” errors. When the translation results in large Promela models, Spin frequently

yields segmentation faults during the compilation stage. For example, SPOT translates the

formula E(8) to an automaton with 258 states and 6,817 transitions in 0.88 seconds. Spin
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Figure 4.4 : Median automated generation times for random formulas with P = 0.5 and
N = 2 based on formula length.

Figure 4.5 : Median model analysis times for random formulas with P = 0.5 and N = 2
based on formula length.
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analyzes the resulting Promela model in 41.75 seconds. SPOT translates the E(9) formula

to an automaton with 514 states and 20,195 transitions in 2.88 seconds, but Spin segmen-

tation faults when trying to compile this model. SPOT and the three symbolic tools are

the only tools that consistently degrade gracefully; they either timeout or terminate with a

succinct, descriptive message.

A more serious problem is that of incorrect results, i.e., reporting “satisfiable” for an

unsatisfiable formula or vice versa. The problem is particularly acute when the returned

automaton Aϕ is empty (has no states). On one hand, an empty automaton accepts the

empty language. On the other hand, Spin conjoins the Promela model for the never claim

with the model under verification, so an empty automaton, when conjoined with a universal

model, actually acts as a universal model. The tools are not consistent in their handling of

empty automata. Some, such as LTL2Buchi and SPOT return an explicit indication of an

empty automaton, while Modella and TMP just return an empty Promela model. We have

taken an empty automaton to mean “unsatisfiable.” In Figure 4.7 we show an analysis of

correctness for random formulas. Here we counted “correct” as any verdict, either “satisfi-

able” or “unsatisfiable,” that matched the verdict found by both CadenceSMV and NuSMV

for the same formula; we found that CadenceSMV and NuSMV always agree with each

other. We excluded data for any formulas that timed out or triggered error messages. All

of the explicit tools showed degraded correctness as the formulas scale in size, in sharp

contrast to the symbolic tools, all of which reported correct results for every test.15

15Note that this is no longer the case today as shortly following our initial study, the subtle bug we un-
covered in the SPOT translator was corrected by the tool author, who also integrated our benchmarks into
SPOT’s test suite. Today, SPOT, like the symbolic tools, always produces correct automata.
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Figure 4.7 : Graph showing the degredation of proportion of correct claims for random
formulas where P = 0.5 and N = 3 based on the length of the random formula.

4.6 Relation of Size to Efficiency

The focus of almost all LTL translation papers, starting with [131], has been on minimizing

automaton size. It has already been noted that automata minimization may not result in

model checking performance improvement [185] and specific attention has been given to

minimizing the size of the product with the model [136, 61]. Our results show that size,

in terms of both number of automaton states and transitions, is not a reliable indicator

of satisfiability checking run time. Intuitively, the smaller the automaton, the easier it is

to check for nonemptiness. This simplistic view, however, ignores the effort required to

minimize the automaton. It is often the case that tools spend more time constructing the

formula automaton than constructing and analyzing the product automaton. As an example,

consider the performance of the tools on counter formulas. We see in Figures 4.1 and 4.2
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dramatic differences in the performance of the tools on such formulas. In contrast, we

see in Figures 4.8 and 4.9 that the tools do not differ significantly in terms of the sizes

of the generated automata. (For reference, we have marked on these graphs the minimum

automaton size for an n-bit binary counter, which is (2n)∗n+1 states. There are 2n numbers

in the series of n bits each plus one additional initial state, which is needed to assure the

automaton does not accept the empty string.) Similarly, Figure 4.6 shows little correlation

between automaton size and run time for E pattern formulas.

Consider also the performance of the tools on random formulas. In Figure 4.10 we see

the performance in terms of the sizes of the generated automata. Performance in terms of

run time is plotted in Figure 4.12, where each tool was run until it timed out or reported an

error for more than 10% of the sampled formulas. SPOT and LTL2BA consistently have

the best performance in terms of total run time, but they are average performers in terms of

automaton size. LTL2Buchi consistently produces significantly more compact automata,

in terms of both states and transitions. It also incurs lower Spin model analysis times than

SPOT and LTL2BA. Yet LTL2Buchi spends so much time generating the automata that it

does not scale nearly as well as SPOT and LTL2BA.

4.7 Symbolic Approaches Outperform Explicit Approaches

Across the various classes of formulas, the symbolic tools outperformed the explicit tools,

demonstrating faster performance and increased scalability. (We measured only combined

automata-generation and model-analysis time for the symbolic tools. The translation to

automata is symbolic and is very fast; it is linear in the size of the formula [65].) We

see this dominance with respect to counter formulas in Figures 4.1 and 4.2, for random

formulas in Figures 4.4, 4.5, and 4.12, and for E pattern formulas in Figure 4.6. For U

pattern formulas, no explicit tools could handle n = 10, while CadenceSMV and NuSMV
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Figure 4.8 : Graph of the number of states in the automata representing 2-variable counter
formulas, based on the number of bits in the binary counter.
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Figure 4.10 : Graphs showing the number of states and transitions in the automata rep-
resenting 3-variable random counter variables, based on the length of the formula when
correctness was 90% or better.
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scale up to n = 20; see Figure 4.11. Recall that U(n) = (. . . (p1 U p2) U . . .) U pn, so

while there is not a clear, canonical automaton for each U pattern formula, it is clear that

the automaton size is exponential.

The only exception to the dominance of the symbolic tools occurs with 3-variable linear

counter formulas, where SPOT outperforms all symbolic tools. We ran the tools on many

thousands of formulas and did not find a single case in which any symbolic tool yielded an

incorrect answer yet every explicit tool gave at least one incorrect answer during our tests.

The dominance of the symbolic approach is consistent with the findings in [197, 198],

which reported on the superiority of a symbolic approach with respect to an explicit ap-

proach for satisfiability checking for the modal logic K. In contrast, [199] compared explicit

and symbolic translations of LTL to automata in the context of symbolic model checking

and found that explicit translation performs better in that context. Consequently, [199]

advocates a hybrid approach, combining symbolic systems and explicit automata. Note,

however, that not only is the context in [199] different than here (model checking rather

than satisfiability checking), but also the formulas studied there are generally small and

translation time is negligible, in sharp contrast to the study we present here. We return to

the topic of model checking in the concluding discussion.

Figures 4.4, 4.5, and 4.12 reveal why the explicit tools generally perform poorly. We

see in these figures that for most explicit tools automata-generation times by far dominate

model-analysis times, which calls into question the focus in the literature on minimizing

automaton size. Among the explicit tools, only SPOT and LTL2BA seem to have been

designed with execution speed in mind. Note that, other than Modella, SPOT and LTL2BA

are the only tools implemented in C/C++.



www.manaraa.com

143

Number of variables in formula

M
e

d
ia

n
T

o
ta

l
R

u
n

T
im

e
(s

e
c
)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10

­2

10
­1

10
0

10
1

10
2

10
3

10
4

10
5

LTL2AUT(B)
LTL2AUT(W)
LTL2BA
LTL2Buchi

LTL­>NBA
Modella
Spot
TMP
Wring

CadenceSMV
NuSMV
SAL­SMC

Run Times for U­class Formulas

CadenceSMV

NuSMV

SAL­SMC

Number of variables in formula

N
u

m
b

e
r

o
f

S
ta

te
s

2 3 4 5 6 7 8 9
10

0

10
1

10
2

10
3

LTL2AUT(B)

LTL2AUT(W)
LTL2BA
LTL2Buchi
LTL­>NBA
Modella

Spot
TMP
Wring

Number of Automata States for U­class Formulas
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Figure 4.12 : Graphs showing the median automata generation times and the median model
analysis times for random formulas with P = 0.5 and N = 3, based on the length of the
formula when 90% or better are correct.
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4.8 Discussion

Too little attention has been given in the formal-verification literature to the issue of debug-

ging specifications. We argued here for the adoption of a basic sanity check: satisfiability

checking for each specification, its compliment, and the conjunction of all specifications.

We showed that LTL satisfiability checking can be done via a reduction to model check-

ing universal models and benchmarked a large array of tools with respect to satisfiability

checking of scalable LTL formulas.

We found that the existing literature on LTL to automata translation provides little in-

formation on actual tool performance. We showed that most explicit LTL translation tools,

with the exception of SPOT, are research prototypes, which cannot be considered industrial-

quality tools. The focus in the literature has been on minimizing automaton size, rather than

evaluating overall performance. Focusing on overall performance reveals a large difference

between LTL translation tools. In particular, we showed that symbolic tools have a clear

edge over explicit tools with respect to LTL satisfiability checking.

While the focus of our study was on LTL satisfiability checking, there are a couple of

conclusions that apply to model checking in general. First, LTL translation tools need to be

fast and robust. In our judgment, this rules out implementations in languages such as Perl

or Python and favors C or C++ implementations. Furthermore, attention needs to be given

to graceful degradation. In our experience, tool errors are invariably the result of graceless

degradation due to poor memory management. Second, tool developers should focus on

overall performance instead of output size. It has already been noted that automata min-

imization may not result in model checking performance improvement [185] and specific

attention has been given to minimizing the size of the product with the model [136]. Still,

no previous study of LTL translation has focused on model checking performance, leaving

a glaring gap in our understanding of LTL model checking.
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Chapter 5

A Multi-Encoding Approach for LTL Symbolic
Satisfiability Checking

5.1 Introduction

In property-based design formal properties, written in temporal logics such as LTL [38],

are written early in the system-design process and communicated across all design phases

to increase the efficiency, consistency, and quality of the system under development [6, 7].

Property-based design and other design-for-verification techniques capture design intent

precisely, and use formal logic properties both to guide the design process and to integrate

verification into the design process [5]. The shift to specifying desired system behavior

in terms of formal logic properties risks introducing specification errors in this very initial

phase of system design, raising the need for property assurance [7, 43].

The need for checking for errors in formal LTL properties expressing desired system

behavior first arose in the context of model checking, where vacuity checking aims at re-

ducing the likelihood that a property that is satisfied by the model under verification is an

erroneous property [44, 45]. Property assurance is more challenging at the initial phases of

property-based design, before a model of the implementation has been specified. Inherent

vacuity checking is a set of sanity checks that can be applied to a set of temporal properties,

even before a model of the system has been developed, but many possible errors cannot be

detected by inherent vacuity checking [46].

A stronger sanity check for a set of temporal properties is LTL realizability checking,

in which we test whether there is an open system that satisfies all of the properties in the
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set [47], but such a test is very expensive computationally. In LTL satisfiability checking,

we test whether there is a closed system that satisfies all of the properties in the set. The

satisfiability test is weaker than the realizability test, but its complexity is lower; it has the

same complexity as LTL model checking [42]. In fact, LTL satisfiability checking can be

implemented via LTL model checking; see Chapter 2.3.

Indeed, the need for LTL satisfiability checking is widely recognized [50, 51, 52, 53,

54]. Foremost, it serves to ensure that the behavioral description of a system is inter-

nally consistent and neither over- or under-constrained. If an LTL property is either valid,

or unsatisfiable this must be due to an error. Consider, for example, the specification

always (b1 → eventually b2), where b1 and b2 are propositional formulas. If b2 is a tautol-

ogy, then this property is valid. If b2 is a contradiction, then this property is unsatisfiable.

Furthermore, the collective set of properties describing a system must be satisfiable, to

avoid contradictions between different requirements. Satisfiability checking is particularly

important when the set of properties describing the design intent continues to evolve, as

properties are added and refined, and have to be checked repeatedly. Because of the need

to consider large sets of properties, it is critical that the satisfiability test be scalable, and

able to handle complex temporal properties. This is challenging, as LTL satisfiability is

known to be PSPACE-complete [42].

As pointed out in Chapter 4 and [52], satisfiability checking can be performed via model

checking. In Chapter 4 and [52] we explored the effectiveness of model checkers as LTL

satisfiability checkers. We compared there the performance of explicit-state and symbolic

model checkers. Both use the automata-theoretic approach [34] but in a different way.

Explicit-state model checkers translate LTL formulas to Büchi automata explicitly and then

use an explicit graph-search algorithm [36], as described in Chapter 2.8. For satisfiability

checking, the construction of the automaton is the more demanding task. Symbolic model

checkers construct symbolic encodings of automata and then use a symbolic nonemptiness
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test. The symbolic construction of the automaton is easy, but the nonemptiness test is

computationally demanding. The extensive set of experiments described in Chapter 4 and

[52] showed that the symbolic approach to LTL satisfiability is significantly superior to the

explicit-state approach in terms of scalability.

In the context of explicit-state model checking, there has been extensive research on

optimized construction of automata from LTL formulas [127, 132, 135, 134, 131, 133, 136,

60], where a typical goal is to minimize the size of constructed automata [35]. Optimiz-

ing the construction of symbolic automata is more difficult, as the size of the symbolic

representation does not correspond directly to its optimality. An initial symbolic encoding

of automata was proposed in [64], but the optimized encoding we call CGH, proposed by

Clarke, Grumberg, and Hamaguchi [65], has become the de facto standard encoding. The

CGH encoding is used by model checkers such as CadenceSMV and NuSMV, and has been

extended to symbolic encodings of industrial specification languages [204]. Surprisingly,

there has been little follow-up research on this topic.

In this chapter, we propose novel symbolic LTL-to-automaton translations and utilize

them in a new multi-encoding approach to achieve significant, sometimes exponential, im-

provement over the current standard encoding for LTL satisfiability checking. First we

introduce and prove the correctness of a novel encoding of symbolic automata inspired

by optimized constructions of explicit automata [127, 135]. While the CGH encoding

uses Generalized Büchi Automata (GBA), our new encoding is based on Transition-based

Generalized Büchi Automata (TGBA). Second, inspired by work on symbolic satisfiabil-

ity checking for modal logic [197], we introduce here a novel sloppy encoding of symbolic

automata, as opposed to the fussy encoding used in CGH. Sloppy encoding uses looser con-

straints, which sometimes results in smaller BDDs. The sloppy approach can be applied

both to GBA-based and TGBA-based encodings, provided that one uses negation-normal

form (NNF), [133], rather than the Boolean normal form (BNF) used in CGH. Finally, we
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introduce several new variable-ordering schemes, based on tree decompositions of the LTL

parse tree corresponding to a given formula, and inspired by observations that relate tree

decompositions to BDD variable ordering [205]. The combination of GBA/TGBA, fussy/s-

loppy, BNF/NNF, and different variable orders yields a space of 30 possible configurations

of symbolic automata encodings. (Not all combinations yield viable configurations.)

Since the value of novel encoding techniques lies in increased scalability, we evaluate

our novel encodings in the context of LTL satisfiability checking, utilizing a comprehensive

and challenging collection of widely-used benchmark formulas [52, 53, 206, 54]; see also

Chapter 3. For each formula, we perform satisfiability checking using all 30 encodings.

(We use CadenceSMV as our experimental platform.) Our results demonstrate conclu-

sively that no encoding performs best across our large benchmark suite. Furthermore, no

single approach–GBA vs. TGBA, fussy vs. sloppy, BNF vs. NNF, or any one variable

order, is dominant. This is consistent with the observation made by others [207, 35] that in

the context of symbolic techniques one typically does not find a “winning” algorithmic con-

figuration. In response, we developed a multi-encoding tool, PANDA, which runs several

encodings in parallel, terminating when the first process returns. We call our tool PANDA

for “Portfolio Approach to Navigate the Design of Automata.” Our experiments demon-

strate conclusively that the multi-encoding approach using the novel encodings invented in

this chapter achieves substantial improvement over CGH, the current standard encoding; in

fact PANDA significantly bested the native LTL model checker built into CadenceSMV.

The structure of this chapter is as follows. We review the CGH encoding [65] in Section

5.2. Next, in Section 5.3, we describe our novel symbolic TGBA encoding. We introduce

our novel sloppy encoding and our new methods for choosing BDD variable orders and

discuss our space of symbolic encoding techniques in Section 5.4. After setting up our

scalability experiment in Section 5.5, we present our test results in Section 5.6, followed

by a discussion in Section 5.7. Though our construction can be used with different symbolic
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model checking tools, in this chapter, we follow the convention of [65] and give examples

of all constructions using the SMV syntax.

5.2 Preliminaries

We assume familiarity with LTL [84]; recall that Definition 2 defines LTL semantics. We

also assume familiarity with Generalized Büchi Automata; recall that they are defined in

Chapter2.4.

We use two normal forms:

Definition 9

Boolean Normal Form (BNF) rewrites the input formula to use only ¬, ∨, X, U, and F .

In other words, we replace ∧,→, R, and G with their equivalents:

g1 ∧ g2 ≡ ¬(¬g1 ∨ ¬g2)

g1 → g2 ≡ ¬g1 ∨ g

g1 R g2 ≡ ¬(¬g1 U ¬g2)

Gg1 ≡ ¬F¬g1

Definition 10

Negation Normal Form (NNF) pushes negation inwards until only atomic propositions

are negated, using the following rules:

¬¬g ≡ g

¬(g1 ∧ g2) ≡ (¬g1) ∨ (¬g2)

¬(g1 ∨ g2) ≡ (¬g1) ∧ (¬g2)

(g1 → g2) ≡ (¬g1) ∨ g2

¬(Xg) ≡ X(¬g)

¬(g1Ug2) ≡ (¬g1R¬g2)

¬(g1Rg2) ≡ (¬g1U¬g2)

¬(Gg) ≡ F (¬g)

¬(F g) ≡ G(¬g)
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Recall from Chapter 2.2.1 that a trace satisfying LTL formula f is an infinite run over

the alphabet Σ = 2Prop, where Prop is the underlying set of atomic propositions. We denote

by models( f ) the set of traces satisfying f . The next theorem (a restatement of Theorem

2.1) relates the expressive power of LTL to that of Büchi automata.

Theorem 5.1

[40] Given an LTL formula f , we can construct a generalized Büchi automaton A f =〈
Q,Σ, δ,Q0, F

〉
such that |Q| is in 2O(| f |), Σ = 2Prop, and Lω(A f ) is exactly models( f ).

This theorem, proved in Chapter 2.4, reduces LTL satisfiability checking to automata-

theoretic nonemptiness checking, as f is satisfiable iff models( f ) , ∅ iff Lω(A f ) , ∅.

Recall from Chapter 2.3 that LTL satisfiability checking relates to LTL model checking

as follows. We use a universal model M that generates all traces over Prop such that

Lω(M) = (2Prop)ω. The code for this model appears in [52] and Chapter 3.5.2. We now

have that M does not satisfy ¬ f iff f is satisfiable. We use a symbolic model checker to

check the formula ¬ f against M; f is satisfiable precisely when the model checker finds a

counterexample.

CGH encoding In this chapter we focus on LTL to symbolic Büchi automata compila-

tion. We recap the CGH encoding [65], which assumes that the formula f is in BNF, and

then forms a symbolic GBA. We first define the CGH-closure of an LTL formula f as the

set of all subformulas of f (including f itself), where we also add the formula X(gU h) for

each subformula of the form g U h. The X-formulas in the CGH-closure of f are called

elementary formulas.

We declare a Boolean SMV variable ELXg for each elementary formulaXg in the CGH-

closure of f . Also, each atomic proposition in f is declared as a Boolean SMV variable.

We define an auxiliary variable S h for every formula h in the CGH-closure of f . (Auxiliary

variables are substituted away by SMV and do not require allocated BDD variables.) The
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characteristic function for an auxiliary variable S h is defined as follows:

S h = p if p ∈ AP

S h =!S g if h = ¬g

S h = ELh if h is a formula Xg

S h = S g1|S g2 if h = g1 ∨ g2

S h = S g2|(S g1&S X(g1 U g2)) if h = g1 U g2

We now generate the SMV model M f :

MODULE main

VAR
/*declare a Boolean variable for each atomic prop in f */
a: boolean;

/*declare a Boolean variable for
every formula Xg in the CGH-closure*/

EL_Xg: boolean;

DEFINE /*auxiliary vars according to characteristic function */
S_h := ...

TRANS /*for every formula Xg in the CGH-closure,
add a transition constraint*/

( S_X_g1 = next(S_g1) ) &
...

( S_X_gn = next(S_gn) )

FAIRNESS !S_gUh | S_h /*for each subformula gUh */

FAIRNESS TRUE /*or a generic fairness condition otherwise*/

SPEC !(S_f & EG true) /*end with a SPEC statement*/
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The traces of M f correspond to the accepting runs of A f , starting from arbitrary states.

Thus, satisfiability of f corresponds to nonemptiness of M f , starting from an initial state.

We can model check such nonemptiness with SPEC !(S f & EG true). A counterex-

ample is an infinite trace starting at a state where S f holds. Thus, the model checker returns

a counterexample that is a trace satisfying f .

Remark 5.1

While the syntax we use is shared by CadenceSMV and NuSMV, the precise semantics of

CTL model checking in these model checkers is not fully documented and there are some

subtle but significant differences between the two tools. Therefore, we use CadenceSMV

semantics here and describe these subtleties below.

5.2.1 CadenceSMV and NuSMV Semantic Subtleties

We encountered one large, and several more subtle but still impactful differences between

the implementations of CadenceSMV and NuSMV when testing our novel encodings. Most

significantly, TGBA-encoded symbolic automata cannot be checked using NuSMV because

variable definitions in terms of DEFINE statements may only assign simple expressions

composed of state variables [180]. Therefore, NuSMV cannot parse the next() opera-

tors in our DEFINE section. NuSMV does not offer alternative ways to define variables

(e.g. ASSIGN-statements) that allow our TGBA construction.1 (While NuSMV ASSIGN-

statements do allow next() operators, they must occur alone on the left-hand-side of

the assignment, which still excludes our TGBA construction.) In CadenceSMV, next()

statements may not be nested or present in INIT, FAIRNESS, or SPEC statements. Our

solution is to use EL-variables in INIT and SPEC statements and use Promise variables in

FAIRNESS statements.

1Thanks to Viktor Schuppan and the members of the NuSMV team for allowing our construction in future
versions of NuSMV.
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Though NuSMV cannot parse our TGBA-encoded automata, for all of the encodings

we could check with both SMV variants, we saw similar, significant improvements when

running PANDA with that model checker as a back-end, versus running the model checker

alone. As expected, we found our automata with NuSMV as a back end produced different

timing results than the same automata with CadenceSMV as a back end, just as running

each of the tools alone produced different timing results, though neither SMV was always

faster. Both tools agreed on the satisfiability of a given LTL formula 100% of the time.

Also, the results (either SAT or UNSAT) returned by CadenceSMV and NuSMV always

agreed with the results of running all 30 encodings of the same formula.

However, in order to compare our novel encodings across both SMV back-ends, we

had to account for several non-intuitive subtle semantic differences between CadenceSMV

and NuSMV. While both basically use the CGH encoding, the precise semantics of CTL

model checking in CadenceSMV and NuSMV are not explicitly documented and the subtle,

often unexpected, differences between the implementations of the two tools complicates

the problem of creating alternative encodings. The following rules are necessary to work

around the several subtleties that arise when checking nonemptiness of fair symbolic Büchi

automata.

There must be at least one initial state. For both NuSMV and CadenceSMV, there

is an implicit universal quantifier over all initial states. If there are no initial states, then

the formula is automatically “true.” Declaring an initial state is not enough to satisfy this

condition. For example, INIT (a&(!a)) specifies that there is no initial state. Sim-

ilar semantic subtleties have impacted related work with SMV, such as model checking

temporal logic meta-property specifications for abstract state machines [208], where this

unexpected quantification over initial states means that M |= EF(ϕ) . M 6|= AG(¬ϕ).

Symbolic automata must always have a FAIR statement, even if it is “FAIR true.”

CadenceSMV considers terminal traces to be fair when there are no fairness constraints. A
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fair trace is defined to be a maximal trace on which all fairness constraints are true infinitely

often, including terminal traces in models without fairness constraints. The semantics with

a fairness constraint is the ”infinite traces” semantics where states without infinite traces

are discarded. Therefore, we must have at least one fairness constraint to prevent the pos-

sibility of a model with one initial state and no legal transitions from model checking as

“false.” Rather than the classical algorithm of implicitly universally quantifying over all

initial states, NuSMV restricts itself to all fair initial states. If there are no fair initial states,

the formula is automatically “true.”

The SPEC should be (! (ϕ ∧ EG true)). Both CadenceSMV and NuSMV consider a

CTL formula ϕ to hold in a model M if ϕ holds in all initial states of M. If M has no initial

states, then every ϕ holds in M. Using SPEC (!(ϕ ∧ EG true)), if the model is not

empty, the counterexample returned is a trace of the model.

INIT ϕ SPEC !(EG true) is not equivalent to SPEC (!(ϕ ∧ EG true)).

For example, if ϕ is simply f alse and we check SPEC (!( f alse ∧ EG true)), then

the check will pass (i.e. there will be no counterexample indicating satisfiability), since no

trace satisfies f alse. If, however, we state INIT f alse and check SPEC !(EG true),

then the check will fail and a counterexample will be returned, which is clearly not what we

intended. Similarly, checking for a finite counterexample using SPEC !(S f ) may produce

spurious results.

5.3 Encoding Symbolic Transition-based Generalized Büchi Automata

We now introduce a novel symbolic encoding, referred to as TGBA, inspired by the explicit-

state transition-based generalized Büchi automata of [135]. Such automata are used by

SPOT [137], which was shown experimentally [52] to be the best explicit LTL translator

for satisfiability checking.



www.manaraa.com

156

Definition 11

A Transition-based Generalized Büchi Automaton (TGBA) is a quintuple (Q,Σ, δ,Q0, F),

where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ ⊆ Q × Σ × Q is a transition relation.

• Q0 ⊆ Q is a set of initial states.

• F ⊆ 2δ is a set of accepting transitions.

A run of a TGBA over an infinite trace π = π0, π1, π2, . . . ∈ Σ is a sequence 〈q0, π0, q1〉,

〈q1, π1, q2〉, 〈q2, π2, q3〉, . . . of transitions in δ such that q0 ∈ Q0 and qi ∈ Q. The automaton

accepts π if it has a run over π that traverses some transition from each set in F infinitely

often.

The next theorem relates the expressive power of LTL to that of TGBAs.

Theorem 5.2

[127, 135] Given an LTL formula f , we can construct a TGBA A f =
〈
Q,Σ, δ, Q0, F

〉
such

that |Q| is in 2O(| f |), Σ = 2Prop, and Lω(A f ) is exactly models( f ).

Expressing acceptance conditions in terms of transitions rather than states enables a signif-

icant reduction in the size of the automata corresponding to LTL formulas [127, 135].

Our new encoding of symbolic automata, based on TGBAs, requires that the input

formula f is in NNF; encoding formulas in BNF or other forms may produce spurious

results. (This is due to the way that the satisfaction ofU-formulas is handled by means of

promise variables; see below.) As in CGH, we first define the closure of an LTL formula f .

In the case of TGBAs, however, we simply define the closure to be the set of all subformulas

of f (including f itself). Note that, unlike in the CGH encoding, U- and F - formulas do

not require the introduction of new X-formulas.
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The set of elementary formulas now contains: f ; allU-,R-, F -,G-, andGF -subformulas

in the closure of f ; as well as all subformulas g where Xg is in the closure of f . Note that

we treat the common GF combination as a single operator; a subformula of the form GF g

adds a single element to the set of elementary formulas as opposed to two elements, one

each for the G- and F -subformulas.

Again, we declare a Boolean SMV variable ELg for every elementary formula g as well

as Boolean variables for each atomic proposition in f . In addition, we declare a Boolean

SMV promise variable Pg for every U-, F -, and GF -subformula in the closure. These

formulas are used to define fairness conditions. Intuitively, Pg holds when g is a promise

for the future that is not yet fulfilled. If Pg does not hold, then the promise must be fulfilled

immediately. To ensure satisfaction of eventualities we require that each promise variable

Pg is false infinitely often. The TGBA encoding creates fewer EL variables than the CGH

encoding, but it does add promise variables.

Again, we define an auxiliary variable S h for every formula h in the closure of f . The

characteristic function for S h is defined similarly to the CGH encoding, with a few changes:

S h = S g1&S g2 if h = g1 ∧ g2

S h = next(ELg) if h = Xg

S h = S g2|(S g1&Pg1 U g2&(next(ELg1 U g2))) if h = g1 U g2

S h = S g2&(S g1|(next(ELg1 R g2))) if h = g1 R g2

S h = S g&(next(ELG g)) if h = G g

S h = S g|(PF g&next(ELF g)) if h = F g

S h = (next(ELGF g))&(S g|PGF g) if h = GF g.

Since we reason directly over the temporal subformulas of f (and not over Xg for tempo-

ral subformula g as in CGH), the transition relation associates elementary formulas with
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matching elements of our characteristic function. Finally, we generate our symbolic TGBA;

here is our SMV model M f :

MODULE main

VAR
/*declare a Boolean variable for each atomic prop in f*/
a : boolean;
...

VAR /*declare a new variable for each elementary formula*/
EL_f : boolean; /*f is the input LTL formula*/
EL_g1 : boolean; /*g is an X-, F-, U-, or GF-formula*/
...
EL_gn : boolean;

DEFINE /*characteristic function definition*/
S_g = ...
...

TRANS /*for each EL-variable, generate a line here*/
( EL_g1 = S_g1 ) & /*a line for every EL variable*/
...
( EL_gn = S_gn )

FAIRNESS (!P_g1) /*fairness constraint for each promise variable*/
...

FAIRNESS TRUE /*only needed if there are no promise variables*/

SPEC !(EL_f & EG TRUE)

Symbolic TGBAs can only be created for NNF formulas because the model checker

tries to guess a sequence of values for each of the promise variables to satisfy the subfor-

mulas, which does not work for negative U-formulas. (This is also the case for explicit

state model checking; SPOT also requires NNF for its TGBA encoding [127].) Consider

the formula f = ¬(a U b) and the trace {a=1,b=0}, {a=1,b=1}, ... Clearly,

(aU b) holds in the trace, so f fails in the trace. If, however, we chose P aUb to be false at

time 0, then EL aUb is false at time 0, which means that f holds at time 0. The correctness
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of our construction is summarized by the following theorem.

Theorem 5.3

Let M f be the SMV program made by the TGBA encoding for LTL formula f . Then M f

does not satisfy the specification !(EL f & EG true) iff f is satisfiable.

Proof: We prove each direction in turn.

Only if: If f is satisfiable then the specification !(EL f & EG true) does not

hold in M f .

If f is satisfiable, there is a trace π = π0, π1, . . . ∈ (2Prop)ω such that π, 0 |= f (trace

π at time instant 0 satisfies f ), where Prop is the set of atomic propositions occurring

in f . To show that !(EL f & EG true) does not hold in M f , we need to exhibit an

infinite trace π′ of M f such that EL f holds at point 0 of π′. A trace π′ of M f is a trace

π′ = π′0, π
′
1, . . . ∈ (2Var( f ))ω, where Var( f ) is the set of variables of M f , consisting of:

• the atomic propositions Prop,

• the variable ELg for each elementary formula g of f ,

• and a promise variable Pg for eachU, F , and GF subformula of f .

Note that Prop ⊆ Var( f ). We define π′ as a conservative extension of π; that is, π′i∩Prop =

πi, for all i ≥ 0. We define this extension as follows:

• for each elementary formula g of f , we have that ELg ∈ π
′
i iff π, i |= g (trace π at time

instant i ∈ ω satisfies subformula g),

• for a subformula g of f , of the form h′Uh, F h or GF h, we have that Pg ∈ π
′
i iff

π, i |= g, but π, i 6|= h.

Note that since f is an elementary formula of itself and π, 0 |= f , we immediately have that

EL f ∈ π
′
0.
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It remains to show that π′ is a trace of M f . To that end we first extend π′. Let Var′( f )

be the set of all variables in M f , including auxiliary variables. We define π′′ ∈ (2Var′( f ))ω

as a conservative extension of π′; that is, π′′i ∩ Var( f ) = π′i , for all i ≥ 0. We define this

extension as follows: for each subformula g of f , we have that S g ∈ π
′′
i iff π, i |= g.

We now need to show that all of the statements of M f hold in π′′. Each TRANS state-

ment ELg = S g holds trivially, as for each elementary formula g of f , we have that

ELg ∈ π
′′
i iff π, i |= g iff S g ∈ π

′′
i . The DEFINE statements for ∧, ∨, X, R, and G hold

because of the basic properties of the propositional and temporal connectives [84]. For

F -, U-, and GF -subformulas, we also have to take into account promise variables. Con-

sider, for example, a subformula h of the form F g, for which the DEFINE statement is

S h = S g|(PF g&next(ELF g)). Suppose S h ∈ π
′′
i , which means that π, i |= F g. We know

that π, i |= F g iff either π, i |= g or both π, i 6|= g and π, i + 1 |= h. If π, i |= g, then S g ∈ π
′′
i .

If π, i 6|= g, then PF g ∈ π
′′
i and ELh ∈ π

′′
i+1. Conversely, if S g ∈ π

′′
i , then π, i |= g, which

entails π, i |= F g and, consequently, S h ∈ π′′i . Also, if ELh ∈ π′′i+1, then π, i + 1 |= h,

and, consequently, π, i |= h and S h ∈ π
′′
i . The arguments for U- and GF -subformulas are

similar.

Finally, we need to show that the FAIRNESS statement holds. That is, for each promise

variable Ph there are infinitely many i’s such that Ph 6|= π′i . Assume, for example, that h is

the subformula F g. Suppose to the contrary that the FAIRNESS statement fails. That is,

there is some i0 ≥ 0 such that Ph ∈ π
′
i for all i ≥ i0. But this means that π, i0 |= F g, and

π, i 6|= g for all i ≥ i0, which is impossible. The arguments forU- and GF-subformulas are

similar.

If: If M f does not satisfy the specification !(EL f & EG true) then f is satisfi-

able.

Suppose the specification !(EL f & EG true) does not hold in M f . Then, by def-

inition, there is an infinite trace π′ = π′0, π
′
1, . . . ∈ (2Var( f ))ω of M f such that EL f holds at
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point 0 of π′, where Var( f ), as defined above, corresponds to the set of atomic propositions

in f , elementary formula variables, and promise variables. To show that f is satisfiable, we

show that the infinite trace π = π0, π1, . . . ∈ (2Prop)ω, defined by πi = π′i ∩ Prop for i ≥ 0,

satisfies f at time 0; that is, π, 0 |= f .

Again, we first define π′′ ∈ (2Var′( f ))ω as a conservative extension of π′, where Var′( f )

includes all variables in M f , including auxiliary variables. The DEFINE statements define

each auxiliary variable S h in the characteristic function in terms of the set of variables in

Var( f ), supplemented with an auxiliary variable S g corresponding to each subformula g of

h. Since π′′ is defined over Var′( f ), the values for the auxiliary variables can be defined

uniquely using the characteristic function.

We now prove that for every subformula h of f and ∀i ≥ 0 we have that S h ∈ π
′′(i)

entails π, i |= h. The proof is by induction on h.

Base case: For h = p ∈ Prop, we have that S h = p. So S h ∈ π
′′(i) iff p ∈ π(i) iff

π, i |= p. If h = ¬p, then we have that S h =!p. So S h ∈ π
′′(i) iff S p < π

′′(i) iff π, i 6|= p iff

π, i |= h,

Induction step: Assume the claim holds for subformulas g, g1, g2 of f .

• h = g1 ∧ g2.

We have that S h = S g1&S g2 . So S h ∈ π
′′(i) iff S g1 ∈ π

′′(i) and S g2 ∈ π
′′(i), which

entails π, i |= g1 and π, i |= g2, which entails π, i |= h.

• h = g1 ∨ g2.

We have that S h = S g1 ∨ S g2 . So S h ∈ π
′′(i) iff S g1 ∈ π

′′(i) or S g2 ∈ π
′′(i), which

entails π, i |= g1 or π, i |= g2, which entails π, i |= h.

• h = Xg.

We have that S h = next(EL g). So S h ∈ π
′′(h) iff ELg ∈ π

′′(i + 1) iff (by the TRANS
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statement) S g ∈ π
′′(i + 1), which, by induction, entails π, i + 1 |= g, which entails

π, i |= h.

• h = g1 U g2.

We have that S h = S g2 |(S g1&Ph&(next(ELh))). Suppose S h ∈ π
′′(i). Then either

S g2 ∈ π
′′(i) or S g1 ∈ π

′′(i), Ph ∈ π
′′(i), and ELh ∈ π

′′(i + 1). Note that, by the TRANS

statement, ELh ∈ π
′′(i + 1) iff S h ∈ π

′′(i + 1). Thus, S g2 can be “postponed,” at the

cost of maintaining S g1 and Ph. But the FAIRNESS statement implies that there is

some j : j ≥ i where Ph < π
′′( j). Choose the smallest such j. Then we have that

S g2 ∈ π
′′( j), and ∀k : i ≤ k < j, we have that S g1 ∈ π

′′(k). By induction, π, j |= g2,

and ∀k, i ≤ k < j, we have that π, k |= g1. It follows that π, i |= h.

• h = g1 R g2.

We have that S h = S g2&(S g1 |(next(ELh)). So S h ∈ π
′′(i) iff S g2 ∈ π

′′(i) and either

S g1 ∈ π
′′(i) or ELh ∈ π

′′(i + 1). Note that, by the TRANS statement, ELh ∈ π
′′(i + 1)

iff S h ∈ π
′′(i + 1). It follows that S g2 is “propagated” until “released” by S g1. That

is, if S h ∈ π
′′(i) then ∀ j : j ≥ i, either S g2 ∈ π

′′( j) or there is some k : i ≤ k < j,

such that S g1 ∈ π
′′(k). By induction, for all j : j ≥ i, either π, j |= g2 or there is some

k : i ≤ k < j, such that π, k |= g1. It follows that π, i |= h.

• h = Gg.

We have that S h = S g&(next(ELh)). So S h ∈ π
′′(i) iff S g ∈ π

′′(i) and ELh ∈ π
′′(i + 1)

iff g ∈ π(i) and (by the TRANS statement) S G g ∈ π
′′(i + 1). It follows that S g is

continually propagated. That is, if S h ∈ π
′′(i), then, for all j : j ≥ i, we have that

S g ∈ π
′′( j). By induction, for all j : j ≥ i, we have that π, j |= g. It follows that

π, i |= h.

• h = F g.
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We have that S h = S g|(Ph&next(ELh)). Suppose S h ∈ π
′′(i). Then either S g ∈ π

′′(i)

or Ph ∈ π
′′(i) and ELh ∈ π

′′(i+1). Note that, by the TRANS statement, ELh ∈ π
′′(i+1)

iff S h ∈ π
′′(i+1). Thus, S g can be “postponed,” at the cost of maintaining Ph. But the

FAIRNESS statement implies that there is some j : j ≥ i where Ph < π
′′( j). Choose

the smallest such j. Then we have that S g ∈ π
′′( j). By induction, π, j |= g. It follows

that π, i |= h.

• h = GF g.

We have that S h = ((next(ELh)&(S g|Ph). Suppose S h ∈ π
′′(i). Then ELh ∈ π

′′(i + 1)

and either S g ∈ π′′(i) or Ph ∈ π′′(i). Note that, by the TRANS statement, ELh ∈

π′′(i + 1) iff S h ∈ π
′′(i + 1). Thus, for all j : j ≥ i we have that S h ∈ π

′′( j). Again, we

note that S g can be “postponed” at the cost of maintaining Ph. But the FAIRNESS

statement implies that for every j : j ≥ i there is some k : k ≥ j where Ph < π
′′(k).

For each j ≥ i, choose smallest such k; call it k j. Then we have that S g ∈ π
′′(k j). By

induction, π, k j |= g. It follows that π, i |= h.

By assumption EL f ∈ π
′′(0). By the TRANS statement it follows that S f ∈ π

′′(0), and

therefore π, 0 |= f . Therefore, f is satisfiable.

5.4 A Set of 30 Symbolic Automata Encodings

Our novel encodings are combinations of four components: (1) Normal Form: BNF or

NNF, described above, (2) Automaton Form: GBA or TGBA, described above, (3) Transi-

tion Form: fussy or sloppy, described below, and (4) Variable Order: default, naı̈ve, LEXP,

LEXM, MCS-MIN, MCS-MAX, described below. In total, we have 30 novel encodings, since

BNF can only be used with fussy-encoded GBAs, as explained below. The CGH encoding

corresponds to BNF/fussy/GBA; we encode this combination with all six variable orders.
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Automaton Form As discussed earlier, CGH is based on GBA, in combination with

BNF. We can combine, however, GBA also with NNF. For this, we need to expand the

characteristic function for symbolic GBAs in order to form them from NNF formulas:

S h = S g1&S g2 if h = g1 ∧ g2

S h = S g2&(S g1|S X(g1 R g2)) if h = g1 R g2

S h = S g&S X(Gg) if h = Gg

S h = S g|S X(F g) if h = F g

Since our focus here is on symbolic encoding, PANDA, unlike CadenceSMV, does not

apply formula rewriting and related optimizations; rather, PANDA’s symbolic automata are

created directly from the given normal form of the formula. Formula rewriting may lead to

further improvement in PANDA’s performance.

Sloppy Encoding: A Novel Transition Form CGH employs iff-transitions, of the form

TRANS (EL g=(S g)). We refer to this as fussy encoding. For formulas in NNF, we can

use only-if transitions of the form TRANS (EL g->(S g)), which we refer to as sloppy

encoding. A similar idea was shown to be useful in the context of modal satisfiability

solving [197]. Sloppy encoding increases the level of nondeterminism, yielding a looser,

less constrained encoding of symbolic automata, which in many cases results in smaller

BDDs. A side-by-side example of the differences between GBA and TGBA encodings

(demonstrating the sloppy transition form) for formula f = ((Xa)&(b U (!a))) is given in

Figures 5.1-5.2.

A New Way of Choosing BDD Variable Orders Symbolic model checkers search for a

fair trace in the model-automaton product using a BDD-based fixpoint algorithm, a process

whose efficacy is highly sensitive to variable order [159]. Finding an optimal BDD variable

order is NP-hard, and good heuristics for variable ordering are crucial; see Chapter 2.9.1.

Recall that we define state variables in the symbolic model for only certain subfor-

mulas: p ∈ AP, EL g, and P g for some subformulas g. We form the variable graph by
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MODULE main
/*formula: ((X (a )) & ((b )U (!(a ))))*/
VAR /*a Boolean var for each prop in f*/

a : boolean;
b : boolean;

VAR /*a var EL_X_g for each formula (X g) in
el_list w/primary op X, U, R, G, or F*/

EL_X_a : boolean;
EL_X__b_U_NOT_a : boolean;

DEFINE
/*each S_h in the characteristic function*/

S__X_a__AND__b_U_NOT_a :=
(EL_X_a) & (S__b_U_NOT_a);

S__b_U_NOT_a :=
(!(a )) | (b & EL_X__b_U_NOT_a);

TRANS /*a line for each (X g) in el_list*/
( EL_X_a -> (next(a) ) ) &
( EL_X__b_U_NOT_a -> (next(S__b_U_NOT_a) ))

FAIRNESS (!S__b_U_NOT_a | (!(a )))
SPEC !(S__X_a__AND__b_U_NOT_a & EG TRUE)

Figure 5.1 : NNF/sloppy/GBA encoding for
CadenceSMV.

MODULE main
/*formula: ((X (a ))& ((b )U (!(a ))))*/
VAR /*a Boolean var for each prop in f*/
a : boolean;
b : boolean;

VAR /*a var for each EL_var in el_list*/
EL__X_a__AND__b_U_NOT_a : boolean;
P__b_U_NOT_a: boolean;
EL__b_U_NOT_a : boolean;

DEFINE
/*each S_h in the characteristic function*/

S__X_a__AND__b_U_NOT_a :=
(S_X_a) & (EL__b_U_NOT_a);

S_X_a := (next(a));
S__b_U_NOT_a := ( ((!(a )))
| (b & P__b_U_NOT_a

& (next(EL__b_U_NOT_a))));
TRANS /*a line for each EL_var in el_list*/
( EL__X_a__AND__b_U_NOT_a ->
(S__X_a__AND__b_U_NOT_a) ) &

( EL__b_U_NOT_a -> (S__b_U_NOT_a) )
FAIRNESS (!P__b_U_NOT_a)
SPEC !(EL__X_a__AND__b_U_NOT_a & EG TRUE)

Figure 5.2 : NNF/sloppy/TGBA encoding
for CadenceSMV.

(a) GBA variable graph. (b) TGBA variable graph.

Figure 5.3 : The variable graphs in (a) and (b) were both formed from the parse tree for
f = ((Xa) ∧ (bU ¬a)).

identifying nodes in the input formula parse tree that correspond to the primary operators

of those subformulas. Since we declare different variables for the GBA and TGBA encod-

ings, the variable graph for a formula f may vary depending on the automaton form we

choose. Figure 5.3 displays the GBA and TGBA variable graphs for an example formula,

overlaid on the parse tree for this formula. We connect each variable-labeled vertex to its

closest variable-labeled vertex descendant(s), skipping over vertices in the parse tree that

do not correspond to state variables in our automaton construction. We create one node
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per subformula variable, irrespective of the number of occurrences of the subformula; for

example, we create only one node for the proposition a in Figure 5.3.

We implement five variable-ordering schemes, all of which take the variable graph as

input. We compare these to the default heuristic of CadenceSMV. The naı̈ve variable order

is formed directly from a pre-order, depth-first traversal of the variable graph. We derive

four additional variable-ordering heuristics by repurposing node-ordering algorithms de-

signed for graph triangulation [209].2 We use two variants of a lexicographic breadth-first

search algorithm: variants perfect (LEXP) and minimal (LEXM). LEXP labels each vertex in

the variable graph with its already-ordered neighbors; the unordered vertex with the lexico-

graphically largest label is selected next in the variable order. LEXM operates similarly, but

labels unordered vertices with both their neighbors and also all vertices that can be reached

by a path of unordered vertices with smaller labels. The maximum-cardinality search (MCS)

variable-ordering scheme differs in the vertex selection criterion, selecting the vertex in the

variable graph adjacent to the highest number of already ordered vertices next. We seed

MCS with an initial vertex, chosen either to have the maximum (MCS-MAX) or minimum

(MCS-MIN) degree.

5.5 Experimental Methodology

Test Methods Each test was performed in two steps. First, we applied our symbolic

encodings to the input formula. Second, each symbolic automaton and variable order file

pair was checked by CadenceSMV. Since encoding time is minimal and heavily dominated

by model-analysis time (the time to check the model for nonemptiness to determine LTL

satisfiability) we focus exclusively on the latter here.

2The graph triangulation implementation we used was coded by the Kavraki Lab at Rice University.



www.manaraa.com

167

Platform We ran all tests on Shared University Grid at Rice (SUG@R), an Intel Xeon

compute cluster.3 SUG@R is comprised of 134 SunFire x4150 nodes, each with two quad-

core Intel Xeon processors running at 2.83GHz and 16GB of RAM per processor. The OS

is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Each test was run with exclusive access to

one node. Times were measured using the Unix time command. More details on the code

used for the experiments described here are available in Appendix ?? and online.

Input Formulas We employed a widely-used [52, 53, 206, 54] collection of benchmark

formulas, established by [52]. All encodings were tested using three types of scalable

formulas: random, counter, and pattern. Definitions of these formulas are given in Chapter

3. Our test set includes four counter and nine pattern formula variations, each of which

scales to a large number of variables, and 60,000 random formulas, as detailed in Chapter

3.2, 3.3, and 3.4, respectively.

Correctness In addition to proving the correctness of our algorithm, the correctness of

our implementation was established by comparing for every formula in our large bench-

mark suite, the results (either SAT or UNSAT) returned by all encodings studied here, as

well as the results returned by CadenceSMV for checking the same formula as an LTL

specification for the universal model given in Chapter 3.5.2. We never encountered an

inconsistency.

5.6 Experimental Results

Our experiments demonstrate that the novel encoding methods we have introduced sig-

nificantly improve the translation of LTL formulas to symbolic automata, as measured in

time to check the resulting automata for nonemptiness and the size of the state space we

3http://rcsg.rice.edu/sugar/



www.manaraa.com

168

can check. No single encoding, however, consistently dominates for all types of formulas.

Instead, we find that different encodings are better suited to different formulas. Therefore,

we recommend using a multi-encoding approach, a variant of the multi-engine approach

[210], of running all encodings in parallel and terminating when the first job completes.

Seven configurations are not competitive While we can not predict the best encodings,

we can reliably predict the worst. The following encodings are never optimal for any

formulas in our test set. Thus, out of our 30 possible encodings, we rule out these seven:

• BNF/fussy/GBA/LEXM (essentially CGH with LEXM)

• NNF/fussy/GBA/LEXM

• NNF/fussy/TGBA/LEXM

• NNF/sloppy/GBA/LEXM

• NNF/fussy/TGBA/MCS-MAX

• NNF/sloppy/TGBA/MCS-MAX

• NNF/sloppy/TGBA/MCS-MIN

NNF is the best normal form, most (but not all) of the time. NNF encodings are al-

ways better for all counter and pattern formulas; see, for example, Figure 5.4. Figure 5.5

demonstrates the use of both normal forms in the optimal encodings chosen by PANDA for

random formulas. BNF encodings are occasionally significantly better than NNF; the solid

blue point in Figure 5.5 corresponds to a formula for which PANDA’s best BNF encoding

is more than four times faster than the best NNF encoding. NNF is best much more often

than BNF, likely because using NNF has the added benefit that it allows us to employ our

sloppy encoding and TGBAs, which often carry their own performance advantages.

No automaton form is best. Our TGBA encodings dominate for R2, S , and U pattern

formulas, and both types of 3-variable counter formulas. For instance, the log-scale plot

in Figure 5.6 shows that the median model analysis time for R2 pattern formulas encoded
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using PANDA’s TGBA form grows subexponentially as a function of the number of vari-

ables, while CadenceSMV’s median model analysis time for the same formulas grows ex-

ponentially. (The best of PANDA’s GBA encodings is also graphed for comparison.) GBA

encodings are better for other pattern formulas, both types of 2-variable counter formulas,

and the majority of random formulas; Figure 5.7 demonstrates this trend for 180 length

random formulas.

No transition form is best Sloppy is the best transition form for all pattern formulas. For

instance, the log-scale plot of Figure 5.8 illustrates that the median model analysis time for

U pattern formulas encoded with PANDA’s sloppy transition form grows subexponentially

as a function of the number of variables, while CadenceSMV’s median model analysis

time for the same formulas grows exponentially. Fussy encoding is better for all counter

formulas. The best encodings of random formulas are split between fussy and sloppy.

Figure 5.9 demonstrates this trend for 140 length random formulas.

No variable order is best, but LEXM is worst. The best encodings for our benchmark

formula set are split between five variable orders. The naı̈ve and default orders are optimal

for more random formulas than the other orders. Figure 5.10 demonstrates that neither the

naı̈ve order nor the default order is better than the other for random formulas. The naı̈ve

order is optimal for E, Q, R, U2, and S patterns. MCS-MAX is optimal for 2- and 3-variable

linear counters. The LEXP variable order dominates for C1, C2, U, and R2 pattern formulas,

as well as for 2- and 3-variable counter formulas, yet it is rarely best for random formulas.

Figure 5.11 demonstrates the marked difference in scalability provided by using PANDA

with the LEXP order over running CadenceSMV on 3-variable counter formulas. We can

analyze much larger models with PANDA using LEXP than with the native CadenceSMV

encoding before memory-out. We never found the LEXM order to be the single best encoding
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for any formula.

A formula class typically has a best encoding, but predictions are difficult While each

of our pattern and counter formulas has a best (or a pair of best) encodings, which remain

consistent as we scale the formulas, we found that we could not reliably predict the best

encoding using any statistics gathered from parsing, such as operator counts or ratios, levels

of nesting, number of variables, etc. For example, we found that the best encoding for a

pattern formula was not necessarily the best for a randomly-generated formula comprised

of the same temporal operators. We surmise that the best encoding is tied to the structure

of the formula on a deeper level; developing an accurate heuristic is left to future work.

There is no single best encoding; a multi-encoding approach is clearly superior We

implement a novel multi-encoding approach: our new PANDA tool creates several encod-

ings of a formula and uses a symbolic model checker to check them for satisfiability in

parallel, terminating when the first check completes. Our experimental data supports this

multi-encoding approach. Figures 5.4, 5.6, and 5.8 highlight the significant decrease in

CadenceSMV model analysis time for R, R2, and U pattern formulas, while Figure 5.11

demonstrates increased scalability in terms of state space using counter formulas. Alto-

gether, we demonstrate that a multi-encoding approach is dramatically more scalable than

the current state of the art. The increase in scalability is dependant on the specific for-

mula, though for some formulas PANDA’s model analysis time is exponentially better than

CadenceSMV’s model analysis time for the same class of formulas.

5.6.1 Application Benchmarks

In order to demonstrate further that our PANDA encoding outperforms the native encoding

of CadenceSMV for real-life LTL satisfiability checking, we also tested both tools on a
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set of application benchmarks, comprised of formulas used to specify actual systems. Our

application benchmark formulas come from six sources:4

1. acacia demo-v22: 10 formulas

2. acacia demo-v3: 6 formulas

3. acacia example: 25 formulas

4. alaska szymanski: 4 formulas

5. anzu amba: 8 formulas

6. anzu genbuf: 10 formulas

The acacia demo-v22, acacia demo-v3, and acacia example formulas are specifications

for systems such as arbiters and traffic-light controllers, distributed with the Acacia tool,5

as developed for a study on LTL realizability and synthesis [211]. The alaska szymanski

formulas6 were developed as liveness properties for the Szymanski mutual exclusion pro-

tocol for LTL satisfiability and model checking [53]. The Anzu7 benchmarks are sets of

formulas used for synthesizing industrial hardware systems from specifications, combined

into monolithic formulas for the purpose of satisfiability checking [212]. The anzu amba

formulas are specifications for advanced microcontroller bus architectures while the anzu

genbuf specifications describe generalized buffers.

We applied PANDA and CadenceSMV to these 63 application benchmark formulas.

PANDA completed 51 formulas before spacing out, while CadenceSMV completed 45

4Thanks to Viktor Schuppan for suggesting these sources, providing some of the formulas in SMV format,
and constructing the Anzu formula combinations.

5http://www.antichains.be/acacia/src/acacia_9_linux_i386.tar.gz
6http://www.antichains.be/alaska/tacas08_experiments.zip
7http://www.iaik.tugraz.at/content/research/design_verification/anzu/
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Figure 5.12 : Cactus plot: median model analysis time over all application benchmarks for
CadenceSMV and the best PANDA encoding.

formulas before spacing out. The comparison of the performance of CadenceSMV and

PANDA’s best encoding on these application benchmark formulas is plotted in Figure 5.12

using a classical cactus plot: the y-axis shows how many instances were checked in time

less than or equal to the runtime given on the x-axis, presuming they are run in parallel.

PANDA solved more formulas and did it in less time than CadenceSMV.

5.7 Discussion

This chapter brought attention to the issue of scalable construction of symbolic automata

for LTL formulas in the context of LTL satisfiability checking. We defined novel encodings

and novel BDD variable orders for accomplishing this task. We explored the impact of these

encodings, comprised of combinations of normal forms, automaton forms, transition forms,
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and variable orders. We showed that each can have a significant impact on performance.

At the same time, we showed that no single encoding outperforms all others and showed

that a multi-encoding approach yields the best result, consistently outperforming the native

translation of CadenceSMV.

We do not claim to have exhaustively covered the space of possible encodings of sym-

bolic automata. Several papers on the automata-theoretic approach to LTL describe ap-

proaches that could be turned into alternative encodings of symbolic automata, cf. [134,

213, 214, 215]. The advantage of the multi-encoding approach we introduced here is its

extensibility; adding additional encodings is straightforward. The multi-encoding approach

can also be combined with different back ends. In this chapter we used CadenceSMV as a

BDD-based back end; using another symbolic back end (cf. [53]) or a SAT-based back end

(cf. [216]) would be an alternative approach, as both BDD-based and SAT-based back ends

require symbolic automata. Since LTL serves as the basis for industrial languages such as

PSL and SVA, the encoding techniques studied here may also serve as the basis for novel

encodings of such languages, cf. [217, 204].

While a thorough investigation led us to conclude it is not possible to predict the best

encoding for a given formula directly from any statistics that can be gathered from the

formula during parse time, this does not exclude the possibility that there may be a dif-

ferent way to accomplish this task. It may be possible to investigate how different types

of structural properties of specification formulas and techniques for encoding them are re-

lated to the efficiency of satisfiability solving or model checking those encodings, similar

to the kind of structural analysis that has been accomplished in the propositional satisfiabil-

ity community [218]. It may be possible to use sophisticated machine learning techniques

to downselect from the possible encodings a smaller subset predicted to achieve optimal

performance [219, 220]. A similar investigation has not yet been done work in the domain

of symbolic LTL-to-automata but it is a possible direction for future work. Note that com-
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petitive parallel execution strategies similar to the approach presented here are also used

to achieve speedups in the propositional satisfiability domain in cases where it is not clear

which compilation of a formula will perform best [221].

In this chapter we examined our novel symbolic encodings of LTL in the context of

satisfiability checking. An important difference between satisfiability checking and model

checking is that in the former we expect to have to handle much larger formulas, since

we need to consider the conjunction of properties. Also, in model checking, the size of

the symbolic automata can be dwarfed by the size of the model under verification. Thus,

the issue of symbolic encoding of automata in the context of model checking deserves a

separate investigation.
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Chapter 6

Improved Algorithm for Explicit LTL Satisfiability and
Model Checking

6.1 Introduction

The translation of LTL specifications constitutes an essential step in model checking and

a major influence on the efficiency of formal verification via model checking. Recall that

in model checking, the negation of the specification is translated into a Büchi automaton,

combined with the system model, and then checked for nonemptiness [34]. The model

checker searches for a counterexample in the form of an infinite fair trace in this combined

model that is shaped like a lasso, starting from an initial system state and terminating

in an infinite loop where the system violates its specification. The encoding of the LTL

specification is an important consideration for efficient model checking as it influences the

efficiency of this search. An extensive survey of LTL-to-automaton translation algorithms

demonstrated that the difference in performance between LTL-to-automaton translators can

be dramatic, having a major impact on the performance of both symbolic and explicit-state

model checking [52]. In this chapter, we devise a new explicit-state translation of LTL-to-

automata that consistently results in better model checking performance, for a large array

of benchmarks, over the best current translation for the class of LTL specifications that

describe safety properties.

Safety properties are arguably the most used formal specifications in practice, encap-

sulating the desired behaviors of a wide variety of real-world systems. Many applica-

tions of fault tolerance [222], hardware resets (which entail truncating the execution path
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and canceling future obligations) [223], dynamic verification applications such as mon-

itoring assertion failures [224], and other applications in runtime verification [225] con-

stitute safety properties. They can describe most intended properties of real-time systems,

since responses are required within bounded intervals [226], and are integral in the assume-

guarantee paradigm, where general verification methods are improved if either the assump-

tion or the guarantee is safe [141].

A safety property expresses the sentiment that “something bad never happens.” Intu-

itively, “something bad” only needs to happen once in a computation for the property to be

violated; what happens after that in the infinite computation does not affect the outcome

of the model-checking step. In this sense, a violation of a safety property can always be

witnessed by a finite prefix. For property ϕ and infinite computation π = π0, π1, . . ., ϕ is a

safety property satisfied by computation π if and only if for all lengths of finite prefixes of

π, that finite prefix concatenated with some infinite computation models ϕ. Oppositely, if

π 6|= ϕ then there is some finite prefix of π, in which something bad happens, that cannot be

extended into an infinite computation that will satisfy ϕ. This property allows us to utilize

finite automata, instead of Büchi automata, for model checking a safety property ϕ. We can

build an automaton that accepts only the bad prefixes of the safety formula and returns a

finite error trace [141]. Safety specifications allow us to take advantage of determinism in

LTL-to-automaton translation.

An automaton is deterministic when there is exactly one transition from every state for

every input character. When we combine a deterministic automaton representing the behav-

ior specification with the system model, the ensuing nonemptiness check is computationally

simpler than if the specification automaton is nondeterministic, perhaps even dramatically

so. A deterministic specification automaton can have a shorter model checking time than a

nondeterministic one because it causes less branching in the product automaton when the

specification and system model automata are combined. Intuitively, when the specification
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automaton is nondeterministic, the model checker has to search for a counterexample trace

both in the system and in the specification automata. If the automaton is deterministic, then

there is no need in the second search since for every trace of the system model there is a

unique run of the specification automaton. Note that determinization of finite automata for

safety properties is much less complex than determinization of ω-automata [227]. While

for any nondeterministic finite automaton with n states there is an equivalent deterministic

automaton with 2O(n) states, it was proved in [148] that the optimal bound for ω-automata

is 2O(n log(n)).

A deterministic automaton can be much larger than an equivalent nondeterministic au-

tomaton; however, it was previously shown that automaton size is not the primary determin-

ing factor in the efficiency of the nonemptiness check [228]. Indeed larger, more determin-

istic automata have resulted in smaller product automata and more efficient model-checking

times [136, 229, 61]. Determinism is actually required if the automata are to be used for

monitoring executions of software [189, 187]. Similar questions have been explored for the

past-time variant of LTL, which is theoretically as expressive as the standard, future-time

LTL presented here, but much more natural to determinize [226, 213, 222].

We introduce 26 novel encodings of LTL safety properties as deterministic automata

in the form of Promela (PROcess MEta LAnguage) never claims for the explicit model

checker Spin [55]. We implement these encodings as an extension of the open-source

CHIMP tool1 [187] that creates SystemC monitors for LTL formulas; we call our extension

CHIMP-Spin since we are creating Spin never claims instead. We compare our model

checking performance against SPOT [137] since [228] found that SPOT outperforms all

other explicit LTL-to-automaton translators. We demonstrate over a large array of bench-

marks that using one of our encodings for model checking of safety properties consistently

1http://sourceforge.net/projects/chimp-rice/
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results in better model checking times than using the SPOT encoding.

A key point of our construction is that we concentrate on reducing model checking

time. Since in real-world applications of model checking, specifications are written once

and checked against a changing system design multiple times, we do not focus on LTL-to-

automaton translation or specification compilation times. This is particularly pertinent for

regression testing: when the system is changed to fix a bug or add a new feature it is nec-

essary to re-check all properties to ensure previous tests produce the same results. Figure

6.1 depicts the Spin model checking process; we measure compilation of LTL-to-never

claim, never claim-to-C, and C-to-binary separately from model checking execution time.

Because we run SPOT as a step in the creation of each of our new encodings, the specifi-

cation automaton generation times incurred by our algorithm will always be greater than

running SPOT alone. (It is important to note that our automaton generation times are con-

sistently dwarfed by the corresponding model checking times.) To streamline regression

testing, we argue that future versions of Spin should not require us to recompile never

claims for each run of the model checker, even when they have not changed. Such an

adjustment would more accurately reflect industrial applications of model checking and,

combined with our reduced model checking times, reduce the amortized cost of model

checking.
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Check

Model

AM,¬f

¬f

EMPTY?

A¬f

M

C → binaryPromela → C

Figure 6.1 : System Diagram illustrating the Spin model checking process.

The structure of this chapter is as follows. We detail the theory underlying our construc-

tion of deterministic encodings of LTL safety specifications in Section 6.2 and demonstrate

our 26 novel constructions of Promela never claims in Section 6.3. We describe our ex-

perimental methods in Section 6.4, present our experimental results and demonstrate that

we can consistently out-perform the current best algorithm for LTL-to-automata, SPOT, in

Section 6.5, and conclude with a discussion in Section 6.6.

6.2 Theoretical Background

Recall from Chapter 2.4 that we can construct an Nondeterministic Büchi Automaton NBA

A = (Q,Σ, δ, q0, F) from any LTL formula ϕ. In the automata-theoretic approach to model

checking [34] we negate the LTL formula ϕ, translate ¬ϕ into the automaton A¬ϕ and

compose A¬ϕ with the model M under verification, forming the automaton AM, ¬ϕ, which

the model checker searches for nonemptiness. If there is no accepting run of AM, ¬ϕ (i.e.

the language L (AM, ¬ϕ) = ∅), we have proved that M |= ϕ. When ϕ is a liveness property,

the automaton A¬ϕ must be an NBA. However, we can specialize the construction of an

automaton that represents ϕ if ϕ is a safety property.
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Let Σ = 2Prop be a finite alphabet. Given an LTL formula ϕ over Prop, and infinite

computation π = π0, π1, . . ., recall from Chapter 2.5 that ϕ is a safety property if:

(∀π, π ∈ Σω : π |= ϕ↔ (∀i, 0 ≤ i : (∃β, β ∈ Σω : π0...i · β |= ϕ))),

where · is the concatenation operator and Σω denotes the set of infinite words (or ω-words)

over Σ [142]. So, if ϕ is violated, there must be some finite prefix α = π0, π1, . . . πi of

the computation π in which this violation occurs. For any infinite computation β over the

alphabet Σ, the concatenation of computations α · β cannot satisfy ϕ. In other words, α is

a bad prefix for L (ϕ) iff for all σ ∈ Σω : α · σ < L (ϕ) [230], where we denote the set of

models of ϕ with L (ϕ) = {w ∈ Σω | w |= ϕ}. We denote by pre f (L (ϕ)) the set of all such

bad prefixes.

While for general properties, the goal of the model checker is to search for bad cy-

cles, for safety properties, the model checker only needs to search for a finite bad prefix.

This can be accomplished with a much simpler algorithm, such as a forward or backward

reachability check. When ϕ is a safety property, instead of constructing from ϕ a Büchi

automaton A¬ϕ that accepts L (¬ϕ), we can construct an automaton on finite words that

detects the bad prefixes of ϕ.

A Nondeterministic Finite Automaton (NFA) is a quintuple (Q,Σ, δ, q0, F), where Q

is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is a transition function,

q0 ∈ Q is the initial state, and F ⊆ Q is a set of accepting states. A Deterministic Finite

Automaton (DFA) is a quintuple (Q,Σ, δ, q0, F), where Q, Σ, q0, F are defined as for an

NFA but δ : Q × Σ → Q. A run of a finite automaton A over a finite computation π =

π0, π1, π2, . . . πn ∈ Σ is accepting if it terminates in a state qn ∈ F.

Theorem 6.1

[141] Given a safety LTL formula ϕ, we can construct a deterministic finite automaton
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Ad = (Q,Σ, δ, q0, F) such that |Q| is in 22O(|ϕ|)
, Σ = 2Prop, and L (Ad) is exactly pre f (L (ϕ)).

Therefore, when ϕ is a safety property, we can opt to form an NFA or a DFA cor-

responding to ¬ϕ instead of an NBA since we only need to construct an automaton that

accepts the set of finite prefixes that witness a violation of ϕ. For example, if ϕ = �good

then ¬ϕ = ^¬good; intuitively ¬ϕ is witnessed by a finite trace ending in ¬good.

LTL → DFA Algorithm Given a safety formula ϕ, we form the NBA Aϕ using SPOT

[137], which was previously shown to be the best available LTL-to-Büchi translator [228].

Similarly to [187] we create via nested depth-first search the state set empty(Aϕ) that con-

tains all of the states in Aϕ that cannot appear on an accepting run. We use SPOT to

remove the set empty(Aϕ) from Aϕ. We then form a finite automaton A f
ϕ by re-labeling

all remaining states to be accepting. We now have the NFA A f
ϕ defined by the quintuple

(Q′,Σ, δ′, q0 ∩ Q′, F ∩ Q′) where Q′ = Q − empty(Aϕ) and δ′ is restricted to Q′ × Σ.

Theorem 6.2

[225]A f
ϕ rejects precisely the minimal bad prefixes of ϕ.

Note that, for model checking, we need an automaton that accepts precisely L (¬ϕ),

which, in this case, corresponds to the set of bad prefixes of ϕ: pre f (L (ϕ)). Customarily,

the model checker checks M |= ϕ by first negating ϕ, then forming the NBA A¬ϕ since

negating an LTL formula avoids the computational complexity of negating its correspond-

ing automaton. However, when ϕ is a safety formula, we can just as easily perform this

negation on-the-fly as we determinize A f
ϕ to form our DFA Ad. We do this by adding a

single state, qstuck and setting F = {qstuck}. Then, at each state in A f
ϕ, whenever there is no

legal outgoing transition for some σ ∈ Σ, we create one to qstuck.
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6.3 Never Claim Generation

A never claim is a Promela code sequence that defines a system behavior that should

never happen. A never claim essentially corresponds to an automaton. Since we use

never claims to specify properties that should never happen (i.e. bad properties we wish

to assert the system does not have), we create a never claim corresponding to the negation

of the property we wish to hold. In other words, when we create a never claim that accepts

exactly L (¬ϕ) we are stating that it would be a correctness violation of the system if there

exists any execution sequence in which ¬ϕ holds. For the system to be considered correct,

ϕ must always hold.

6.3.1 Forming a Never claim

To generate a Promela never claim for LTL formula ϕ, Spin translates ¬ϕ into the NBA

A¬ϕ = (Q,Σ, δ, q0, F), enumerates the states in Q, labels q0 with ’init’ to designate the state

in which the never claim starts, labels each q ∈ F with ’accept,’ and implements δ by a

nondeterministic choice: for each state, nondeterministically choose from among enabled

transitions given the set of propositions true in the current state. Currently, all LTL-to-

Promela translators follow this high-level construction. (They vary widely in the details of

the formation of A¬ϕ as described in Chapter 4.2.1 but output A¬ϕ as a Promela never

claim in the same way.) For example, the never claim generated by SPOT for ϕ = �good

is:

1 never { /* <>!good */
2 T0_init:
3 if
4 :: (good) -> goto T0_init
5 :: (!good) -> goto accept_all
6 fi;
7 accept_all:
8 skip
9 }
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Note that this never claim corresponds to an NBA for ¬ϕ: a trace violating ϕ sends the

never claim into a (single-state) ω-acceptance cycle. Infinite behavior is matched if the

claim can reach an ω-acceptance cycle; the run-time flag -a explicitly tells Spin to check

for acceptance cycles.

6.3.2 Never claims for finite behavior

To prove a system model M satisfies the LTL property ϕ = (�good), we create a never

claim that accepts the negation of this property. Spin can do this automatically using the

command spin -f ’![] good’. Intuitively, the never claim generated by this for-

mula would restrict system behavior to those states where (^!good) holds. If any such

executions of the system are found, Spin will throw a violation.

In addition to the NBA never claims produced by Spin, SPOT, and other tools, never

claims can be also be used to specify finite automata; the distinction is inherent in the

structure of the claim rather than explicitly labeled. Finite behavior is matched if the claim

can reach its closing curly brace while executing in lockstep with the system model [188].

Spin automatically checks for this type of never claim termination.

A never claim corresponding to the NFA that accepts ¬ϕ simply needs to reach its

closing curly brace if !good is ever true, thus accepting the finite trace corresponding to

a correctness violation of the system. Therefore, we could represent this property with a

never claim as simple [188] as:

1 never { /* ![] good == <> ! good */
2 do
3 :: true
4 :: ! good -> break
5 od
6 }

Note that we check the above never claim using different Spin commands than the
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infinite-acceptance version. Specifically, we check for finite acceptance using the following

commands:

cat Model > pan_in
cat finite_never_claim >> pan_in
spin -a pan_in
gcc -w -o pan -D_POSIX_SOURCE -DMEMLIM=128 -DSAFETY -DXUSAFE

-DNOFAIR -DNXT pan.c
./pan -v -X -m10000 -w19 -A -E -c1

In this paper, we construct a Promela never claim corresponding to the automaton

Ad. We now describe novel alternatives for constructingAd when ϕ is a safety property.

6.3.3 Determinization

We experiment with forming our DFAAd in two ways [187]. Firstly, we can explicitly de-

terminize our NFA using the subset construction via the BRICS Automaton tool [231],

which we call a det construction. Secondly, we can create a Promela never claim from

our nondeterministic automaton with added code to essentially perform the subset con-

struction on-the-fly (nondet construction). To do this, we construct a run P0, P1, . . . , Pn

of Ad such that P0 = {q0} and Pi+1 =
⋃

q∈Pi
δ(q, σi). Studying the trade-off between these

two constructions is one of the contributions of this paper.

6.3.4 State minimization

We can opt to utilize a tool that constructs a minimal equivalent Ad such as the BRICS

Automaton tool [231], which we call a min construction. The extra steps of determiniza-

tion and minimization may incur a nontrivial computational cost during the construction of

Ad. A key question is whether the cost of minimization and the associated reduction of

time required by the model-checking step lead to a better amortized verification cost if we

can createAd once and use it for model checking many times.
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6.3.5 Alphabet representation [187]

SPOT labels the transitions of Ad with Boolean formulas over the alphabet of Ad, Σ =

2Prop. We cannot use Boolean formulas for transition labels in all of our constructions

since automata-theoretic algorithms for determinization and minimization of NBAs require

comparing elements of Σ.2 Therefore, we adapt the methods of [187] for describing the

alphabet ofAd in terms of 16-bit integers.

BDD-based representation

We can represent the Boolean formulas comprising the alphabet utilizing Ordered Binary

Decision Diagrams (OBDDs). Recall from Chapter 2.9 that an OBDD is a rooted, directed,

acyclic graph with internal variable-node vertices of out-degree two, labeled by some suf-

ficient subset of the n variables of the corresponding Boolean formula, and exactly two

terminal vertices, 0 and 1. A root-to-leaf path through the OBDD follows a total order of

the variables, representing a valuation of the Boolean formula.

We implement this approach as follows. First, we obtain references to all Boolean

formulas that appear as transition labels inA f using SPOT’s spot::tgba reachable

iterator breadth first::process link() function. Second, we assign a unique

integer label to the OBDD representation of each Boolean formula (up to 2|ϕ| in the worst

case) with the help of SPOT’s spot::tgba succ iterator::current condition()

function and the canonicity property of OBDDs for a given variable order. We can then

define A f using integers to form the alphabet for our BDD-based representation: A f =

(Q, {0, . . . , 2|ϕ|}, δbdd, q0, F) where q′ ∈ δbdd(q, z) iff q′ ∈ δ(q, σ) and the integer z labels the

Boolean formula σ.

2BRICS Automaton represents the alphabet of the automaton as Unicode characters, which have 1-to-1
correspondence to the set of 16-bit integers.
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Assignment-based representation

Traditionally, we represent Boolean formulas in terms of their satisfying truth assignments.

An assignment to the set of propositions in Prop is an n-bit vector a = [a1, a2, . . . , an]; a

satisfies Boolean formula ϕ over {p1, p2, . . . , pn} ∈ Prop iff assigning the values (a1, a2, . . . , an)

to the propositions in Prop causes ϕ to evaluate to true. We can define a function I map-

ping from the set of such possible assignments to the set of integers by evaluating a as the

integer whose binary representation is a. Thus, I(a) = a12n−1 + a22n−2 + . . . + an20. Let

sat(ϕ) = {I(a) : a satisfies ϕ}. We can then define A f utilizing assignment-based repre-

sentation: A f
abr = (Q, {0, . . . , 2n − 1}, δabr, q0, F) where q′ ∈ δabr(q, z) iff q′ ∈ δ(q, σ) and

z ∈ sat(σ) for some integer z and Boolean formula σ.

FormingAd

We use BRICS Automaton to form Ad
abr and Ad

bdd from A f
abr and A f

bdd, respectively.

We then convert the automata alphabets from integers corresponding to their alphabet-

based or bdd-based representations back to Boolean formulas that we can use in forming

transition labels as we produce a corresponding Promela never claim. In cases whenAd

is a minimized determinized automaton formed fromA f
abr we may optionally employ edge

abbreviation before forming the never claim.

Edge Abbreviation

When we create never claims using the assignment-based representation, we can create

redundant transitions; a state can easily have 2|Σ| transitions, one for every valuation of

the set of atomic propositions. We can employ edge abbreviation by creating a disjunc-

tion of all of the transition labels of transitions that share the same source and destination

states, removing all of these transitions fromAd, and replacing each set of redundant tran-
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sitions with a single transition labeled by the disjunction of their labels. For each such

disjunction, we utilize SPOT’s built-in formula to bdd() function to create a BDD

representing the disjunction, extract a simplified formula from the BDD via the reverse

bdd to formula() function, and then label the associated transition by this new, usu-

ally simpler, formula. In effect, we replace the original set of transitions with an abbreviated

set of transitions.

In the case that a state in a never claim formed using the assignment-based representa-

tion has t < 2|Σ| transitions, the remaining 2|Σ|− t valuations of the set of atomic propositions

causeAd to transition to the accepting state. In Promela, this is encapsulated with an else

transition to the accepting state; an else transitions is enabled if and only if no other tran-

sitions are enabled in the same state. However, we can also create a label for this transition

from a state q by taking the negation of the disjunction of all of the abbreviated transitions

whose source is q and using SPOT’s built-in BDD functions to reduce this formula. If the

resulting formula is false, then there is no transition from q to the accepting state and we

can delete the else transition; if not, the resulting formula is the label of this transition.

Explicitly labeling these transitions to accepting states allows us to prune any trap states

fromAd where a trap state q is defined to be a non-accepting, non-initial state with exactly

one self-looping transition from q back to q. In the semantics of Promela, once we have

eliminated all else transitions, we can simply delete all trap states and any transitions

to or from them, resulting in an equivalent never claim representing Ad with a smaller

code signature. Note that this construction retains the deterministic nature of Ad; instead

of transitioning to a trap state with a non-accepting loop, the automaton will simply fail

immediately whenever Spin detects that no transitions are enabled.



www.manaraa.com

192

6.3.6 Never claim encodings

We introduce 26 ways of encoding automata as Promela never claims. We form these

encodings by combining our never claim adaptations of the constructions for transition

direction (front vs back), determinism (det vs nondet), state minimization (min vs

nomin), and alphabet representation (bdd vs abr) from [187] with the options to encode

never claim states either using Promela state labels or integer state numbers (state vs

number), to employ either finite or infinite acceptance conditions (fin vs inf), and to

reduce the size of the generated never claim via edge abbreviation and trap-state elimi-

nation (ea). We illustrate our encodings below for a benchmark safety formula we name

ButtonPushX (Chapter 3.6.1).

Nondeterministic encodings

We introduce 12 novel encodings that encode A f as a never claim while performing de-

terminization (i.e. creating Ad) on-the-fly. The major difference between nondet and

det never claims is that nondet never claims maintain an array used for tracking all

possible runs of the automaton given the valuations of the state variables and report failure

when there are no possible runs. This tracking array is not needed in det never claims

since they have already been determinized and for any computation, there is only one pos-

sible run. We must encode nondet never claims using state numbers, similarly to [187].

Using state numbers enables us to track the possible current and next states; state labels and

edge abbreviation algorithms are not compatible with this construction. We can encode the

transition relations either in either a front fashion, where for any state q we enumerate

the outgoing transitions from q, or in a back fashion, where for any state q we reason over

the incoming transitions that could have led us to q.

The front nondet encoding uses an if statement to check each outgoing transition
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from each possible current state and marks all possible next states in the next state

array. If there are no possible next states, the automaton fails. For never claims with finite

acceptance conditions, this is accomplished by breaking from the do loop and coming to

the end } of the claim, as shown in Listing 6.1.

1 /*LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int i = 0;
3 bool not_stuck = false;
4
5 /*Declare state arrays; they are automatically initialized to 0*/
6 bool current_state [3];
7 bool next_state [3];
8 never {
9 /*This next line happens in time -1; one step before the first

10 step of the system model*/
11 next_state[2] = 1; /*initialize current to the initial state*/
12
13 do
14 :: atomic{
15 /*First, swap of current_state and next_state*/
16 i = 0;
17 do
18 :: (i < 3 ) ->
19 current_state[i] = next_state[i];
20 i++;
21 :: (i >= 3) -> break;
22 od;
23 /*reset next_state*/
24 i = 0;
25 do
26 :: (i < 3) ->
27 next_state[i] = 0;
28 i++;
29 :: (i >= 3) -> break;
30 od;
31 /*Second, fill in next_state array*/
32 if
33 :: current_state[2] ->
34 if
35 :: (1 )
36 -> next_state[1] = 1;
37 :: else -> skip;
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38 fi;
39 :: else -> skip;
40 fi;
41 if
42 :: current_state[0] ->
43 if
44 :: (1 )
45 -> next_state[0] = 1;
46 :: else -> skip;
47 fi;
48 :: else -> skip;
49 fi;
50 if
51 :: current_state[1] ->
52 if
53 :: (p0 && p1 && p2 )
54 -> next_state[0] = 1;
55 :: else -> skip;
56 fi;
57 if
58 :: ((p2 && !p0) || (p2 && !p1) )
59 -> next_state[1] = 1;
60 :: else -> skip;
61 fi;
62 :: else -> skip;
63 fi;
64 /*Third, check if we’re stuck*/
65 i = 0;
66 not_stuck = false;
67 do
68 :: (i < 3) ->
69 not_stuck = not_stuck || next_state[i];
70 i++;
71 :: (i >= 3) -> break;
72 od;
73 if
74 :: (! not_stuck) -> break;
75 :: else -> skip;
76 fi;
77 }
78 od;
79 }

Listing 6.1: Illustrating front nondet nomin bdd number fin never claim en-
coding of the ButtonPushX formula. Note this encoding utilizes finite acceptance.
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The back nondet encoding similarly begins by initializing the arrays tracking the

possible current and next states except now a next state is enabled by checking that there

is an enabled incoming transition from an enabled current state and a valid transition label.

If there are no possible next states, the automaton fails. For never claims with infinite

acceptance conditions, we loop infinitely often if the property holds. This is accomplished

by transitioning to an accepting state with a self-loop, as shown in Listing 6.2.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int i = 0;
3
4 /*Declare state arrays
5 They are automatically initialized to 0*/
6 bool current_state [3];
7 bool next_state [3];
8 never {
9

10 S0_init: /*initialize current here*/
11 atomic {
12 current_state[0] = 1;
13 next_state[0] = 0;
14 next_state[1] = ( current_state[2] && (p0 && p1 && p2)) ||
15 ( current_state[1] && (1));
16 next_state[2] = ( current_state[0] && (1)) ||
17 ( current_state[2] && ((p2&&!p0)||(p2&&!p1)));
18
19 /* if any next state is enabled, loop */
20 /* Note that this if-statement will choose nondeterministically
21 from among the true guards, but that’s OK since multiple
22 guards go to the same place*/
23 if
24 :: next_state[0] -> goto S1;
25 :: next_state[1] -> goto S1;
26 :: next_state[2] -> goto S1;
27 :: else -> goto accept_all;
28 fi;
29 }
30
31 S1: /*loop here forever if property holds*/
32 atomic {
33 /*update: current_state = next_state*/
34 i = 0;
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35 do
36 :: (i < 3) ->
37 current_state[i] = next_state[i];
38 i++;
39 :: (i >= 3) -> break;
40 od;
41
42 next_state[0] = 0;
43 next_state[1] = ( current_state[2] && (p0 && p1 && p2)) ||
44 ( current_state[1] && (1));
45 next_state[2] = ( current_state[0] && (1)) ||
46 ( current_state[2] && ((p2&&!p0)||(p2&&!p1)));
47
48 /* if any next state is enabled, loop */
49 if
50 :: next_state[0] -> goto S1;
51 :: next_state[1] -> goto S1;
52 :: next_state[2] -> goto S1;
53 :: else -> goto accept_all;
54 fi;
55 }
56
57 accept_all: /*signal property violation by omega-looping here*/
58 skip;
59 }

Listing 6.2: Illustrating back nondet min bdd number inf encoding of the Button-
PushX formula. Note this encoding utilizes infinite acceptance.

Deterministic encodings

We introduce 14 novel deterministic encodings that presume Ad has been minimized and

determinized using assignment-based encoding. Since the det encodings do not need to

determinize Ad on the fly, we have two options for encoding the states. We can utilize

numbers (number) to refer to the states implicitly as we do for the nondet encodings,

except that since there is only one possible run of the automaton we need only one integer

each to refer to the current and next states rather than two arrays of integers as we used

for the nondet encodings. Alternatively, we can use Spin’s standard state-label format
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coupled with goto statements to transition between states. We illustrate each of these two

state representations in turn.

The back det encoding uses state numbers. The never claim begins by calculat-

ing the system state index, the integer corresponding to the current valuation of the

system variables. Like its back nondet counterpart, it transitions by checking for an en-

abled incoming transition from the enabled current state, except in the back det never

claim the current and next states are represented as single integers instead of arrays. For

never claims with finite acceptance conditions, acceptance is accomplished by breaking

from the do loop and coming to the end } of the claim, as shown in Listing 6.3.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int current_state = 2;
3 int next_state = 2;
4 int system_state_index = 0;
5 never {
6 next_state = 2; /*initialize current to the initial state here*/
7
8 do
9 :: atomic {

10 current_state = next_state; /*update state*/
11 next_state = -1; /*reset*/
12
13 /*Calculate the system state index*/
14 system_state_index = 0; /*reset*/
15 system_state_index=system_state_index+ ((p0) -> (1 << 2):0);
16 system_state_index=system_state_index+ ((p1) -> (1 << 1):0);
17 system_state_index=system_state_index+ ((p2) -> (1 << 0):0);
18 if
19 :: (((current_state == 2) && (system_state_index == 5)) ||
20 ((current_state == 2) && (system_state_index == 7)) ||
21 ((current_state == 0) && (system_state_index == 1)) ||
22 ((current_state == 0) && (system_state_index == 5)) ||
23 ((current_state == 2) && (system_state_index == 6)) ||
24 ((current_state == 2) && (system_state_index == 0)) ||
25 ((current_state == 2) && (system_state_index == 3)) ||
26 ((current_state == 2) && (system_state_index == 4)) ||
27 ((current_state == 0) && (system_state_index == 3)) ||
28 ((current_state == 2) && (system_state_index == 1)) ||
29 ((current_state == 2) && (system_state_index == 2)))
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30 -> next_state = 0;
31 :: (((current_state == 0) && (system_state_index == 7)) ||
32 ((current_state == 1) && (system_state_index == 0)) ||
33 ((current_state == 1) && (system_state_index == 1)) ||
34 ((current_state == 1) && (system_state_index == 2)) ||
35 ((current_state == 1) && (system_state_index == 3)) ||
36 ((current_state == 1) && (system_state_index == 4)) ||
37 ((current_state == 1) && (system_state_index == 5)) ||
38 ((current_state == 1) && (system_state_index == 6)) ||
39 ((current_state == 1) && (system_state_index == 7)))
40 -> next_state = 1;
41 :: else break;
42 fi;
43 }
44 od;
45 }

Listing 6.3: Illustrating back det min abr number fin encoding of the Button-
PushX formula.

The front det switch number fin encoding uses a series of if statements, the

closest Promela construction to a C-like switch statement, to check for enabled outgoing

transitions from the current state. As in Listing 6.3, this encoding uses state numbers as

identifiers and employs the Promela finite acceptance condition where the claim is accepted

if the never claim reaches its closing curly brace, as shown in Listing 6.4. Note that

this encoding is the closest Promela equivalent to the winning SystemC encoding for LTL

monitors [187].

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int current_state = 2;
3 int next_state = 2;
4 int system_state_index = 0;
5 never {
6 next_state = 2; /*initialize current to the initial state here*/
7
8 do
9 :: atomic {

10 current_state = next_state; /*update state*/
11 next_state = -1; /*reset*/
12
13 /*Calculate the system state index*/
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14 system_state_index = 0; /*reset*/
15 system_state_index=system_state_index+((p0) -> (1 << 2):0);
16 system_state_index=system_state_index+((p1) -> (1 << 1):0);
17 system_state_index=system_state_index+((p2) -> (1 << 0):0);
18 if
19 :: (current_state == 2) ->
20 if
21 :: (system_state_index == 5 )
22 -> next_state = 0;
23 :: (system_state_index == 7 )
24 -> next_state = 0;
25 :: (system_state_index == 6 )
26 -> next_state = 0;
27 :: (system_state_index == 0 )
28 -> next_state = 0;
29 :: (system_state_index == 3 )
30 -> next_state = 0;
31 :: (system_state_index == 4 )
32 -> next_state = 0;
33 :: (system_state_index == 1 )
34 -> next_state = 0;
35 :: (system_state_index == 2 )
36 -> next_state = 0;
37 :: else break;
38 fi;
39 :: (current_state == 0) ->
40 if
41 :: (system_state_index == 7 )
42 -> next_state = 1;
43 :: (system_state_index == 1 )
44 -> next_state = 0;
45 :: (system_state_index == 5 )
46 -> next_state = 0;
47 :: (system_state_index == 3 )
48 -> next_state = 0;
49 :: else break;
50 fi;
51 :: (current_state == 1) ->
52 if
53 :: (system_state_index == 0 )
54 -> next_state = 1;
55 :: (system_state_index == 1 )
56 -> next_state = 1;
57 :: (system_state_index == 2 )
58 -> next_state = 1;
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59 :: (system_state_index == 3 )
60 -> next_state = 1;
61 :: (system_state_index == 4 )
62 -> next_state = 1;
63 :: (system_state_index == 5 )
64 -> next_state = 1;
65 :: (system_state_index == 6 )
66 -> next_state = 1;
67 :: (system_state_index == 7 )
68 -> next_state = 1;
69 :: else break;
70 fi;
71 fi;
72 }
73 od;
74 }

Listing 6.4: Illustrating front det switch number fin never claim encoding of
the ButtonPushX formula.

The front det switch number inf encoding modifies the encoding in Listing

6.4 to employ infinite acceptance. If there are no possible next states, the automaton fails

by looping at the accept stuck label, as shown in Listing 6.5.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int current_state = 2;
3 int next_state = 2;
4 int system_state_index = 0;
5 never {
6
7 S0_init:/*initialize current here*/
8 atomic {
9 current_state = 2;

10
11 /*Calculate the system state index*/
12 system_state_index = 0; /*reset*/
13 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
14 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
15 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
16 if
17 :: (system_state_index == 5 )
18 -> next_state = 0; goto S1;
19 :: (system_state_index == 7 )
20 -> next_state = 0; goto S1;
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21 :: (system_state_index == 6 )
22 -> next_state = 0; goto S1;
23 :: (system_state_index == 0 )
24 -> next_state = 0; goto S1;
25 :: (system_state_index == 3 )
26 -> next_state = 0; goto S1;
27 :: (system_state_index == 4 )
28 -> next_state = 0; goto S1;
29 :: (system_state_index == 1 )
30 -> next_state = 0; goto S1;
31 :: (system_state_index == 2 )
32 -> next_state = 0; goto S1;
33 :: else
34 -> goto accept_stuck;
35 fi;
36 }
37
38 S1: /*loop here forever if property holds*/
39 atomic {
40 current_state = next_state; /*update state*/
41
42 /*Calculate the system state index*/
43 system_state_index = 0; /*reset*/
44 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
45 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
46 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
47 if
48 :: (current_state == 2) ->
49 if
50 :: (system_state_index == 5 )
51 -> next_state = 0; goto S1;
52 :: (system_state_index == 7 )
53 -> next_state = 0; goto S1;
54 :: (system_state_index == 6 )
55 -> next_state = 0; goto S1;
56 :: (system_state_index == 0 )
57 -> next_state = 0; goto S1;
58 :: (system_state_index == 3 )
59 -> next_state = 0; goto S1;
60 :: (system_state_index == 4 )
61 -> next_state = 0; goto S1;
62 :: (system_state_index == 1 )
63 -> next_state = 0; goto S1;
64 :: (system_state_index == 2 )
65 -> next_state = 0; goto S1;
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66 :: else
67 -> goto accept_stuck;
68 fi;
69 :: (current_state == 0) ->
70 if
71 :: (system_state_index == 7 )
72 -> next_state = 1; goto S1;
73 :: (system_state_index == 1 )
74 -> next_state = 0; goto S1;
75 :: (system_state_index == 5 )
76 -> next_state = 0; goto S1;
77 :: (system_state_index == 3 )
78 -> next_state = 0; goto S1;
79 :: else
80 -> goto accept_stuck;
81 fi;
82 :: (current_state == 1) ->
83 if
84 :: (system_state_index == 0 )
85 -> next_state = 1; goto S1;
86 :: (system_state_index == 1 )
87 -> next_state = 1; goto S1;
88 :: (system_state_index == 2 )
89 -> next_state = 1; goto S1;
90 :: (system_state_index == 3 )
91 -> next_state = 1; goto S1;
92 :: (system_state_index == 4 )
93 -> next_state = 1; goto S1;
94 :: (system_state_index == 5 )
95 -> next_state = 1; goto S1;
96 :: (system_state_index == 6 )
97 -> next_state = 1; goto S1;
98 :: (system_state_index == 7 )
99 -> next_state = 1; goto S1;

100 :: else
101 -> goto accept_stuck;
102 fi;
103 fi;
104 }
105 accept_stuck: /*signal property violation by omega-looping here*/
106 skip;
107 }

Listing 6.5: Illustrating front det switch number inf never claim encoding of
the ButtonPushX formula. It employs the Promela acceptance-cycle acceptance condition.
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Alternatively, we can encode an equivalent never claim to that in Listing 6.5 without

using any state numbers, by taking advantage of Promela’s constructs for representing au-

tomata states. The front det switch state inf encoding in Listing 6.6 transitions

to program labels corresponding to the names of the states inAd. The initial state is labeled

“init” and appears first, the accepting state is labeled “accept,” and all other states are

assigned unique names. The front det switch state inf encoding also relies on

Spin’s implementation of infinite acceptance where the model checker searches for infinite

acceptance cycles that will only be found by transitioning to the accept stuck state and

then looping there forever.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int system_state_index = 0;
3 never {
4
5 init_S2:
6 atomic {
7 system_state_index = 0; /*reset*/
8 system_state_index= system_state_index + ((p0) -> (1 << 2):0);
9 system_state_index= system_state_index + ((p1) -> (1 << 1):0);

10 system_state_index= system_state_index + ((p2) -> (1 << 0):0);
11 if
12 :: (system_state_index == 5 )
13 -> goto S0;
14 :: (system_state_index == 7 )
15 -> goto S0;
16 :: (system_state_index == 6 )
17 -> goto S0;
18 :: (system_state_index == 0 )
19 -> goto S0;
20 :: (system_state_index == 3 )
21 -> goto S0;
22 :: (system_state_index == 4 )
23 -> goto S0;
24 :: (system_state_index == 1 )
25 -> goto S0;
26 :: (system_state_index == 2 )
27 -> goto S0;
28 :: else
29 -> goto accept_stuck;
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30 fi;
31 }
32 S0:
33 atomic {
34 system_state_index = 0; /*reset*/
35 system_state_index= system_state_index + ((p0) -> (1 << 2):0);
36 system_state_index= system_state_index + ((p1) -> (1 << 1):0);
37 system_state_index= system_state_index + ((p2) -> (1 << 0):0);
38 if
39 :: (system_state_index == 7 )
40 -> goto S1;
41 :: (system_state_index == 1 )
42 -> goto S0;
43 :: (system_state_index == 5 )
44 -> goto S0;
45 :: (system_state_index == 3 )
46 -> goto S0;
47 :: else
48 -> goto accept_stuck;
49 fi;
50 }
51 S1:
52 atomic {
53 system_state_index = 0; /*reset*/
54 system_state_index= system_state_index + ((p0) -> (1 << 2):0);
55 system_state_index= system_state_index + ((p1) -> (1 << 1):0);
56 system_state_index= system_state_index + ((p2) -> (1 << 0):0);
57 if
58 :: (system_state_index == 0 )
59 -> goto S1;
60 :: (system_state_index == 1 )
61 -> goto S1;
62 :: (system_state_index == 2 )
63 -> goto S1;
64 :: (system_state_index == 3 )
65 -> goto S1;
66 :: (system_state_index == 4 )
67 -> goto S1;
68 :: (system_state_index == 5 )
69 -> goto S1;
70 :: (system_state_index == 6 )
71 -> goto S1;
72 :: (system_state_index == 7 )
73 -> goto S1;
74 :: else
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75 -> goto accept_stuck;
76 fi;
77 }
78 accept_stuck: /*signal property violation by omega-looping here*/
79 skip;
80 }

Listing 6.6: Illustrating front det switch min abr state inf never claim en-
coding of the ButtonPushX formula. This version employs the Promela notion of states
and the Promela acceptance-cycle acceptance condition.

The front det switch state fin encoding changes the equivalent encoding in

Listing 6.6 only in that it employs the Promela finite acceptance condition where the claim

is accepted if the never claim reaches its closing curly brace. Note that we can eliminate

the accept stuck state and instead accept based on never claim termination at the

done label, as shown in Listing 6.7.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int system_state_index = 0;
3 never {
4
5 init_S2:
6 atomic {
7 system_state_index = 0; /*reset*/
8 system_state_index= system_state_index + ((p0) -> (1 << 2):0);
9 system_state_index= system_state_index + ((p1) -> (1 << 1):0);

10 system_state_index= system_state_index + ((p2) -> (1 << 0):0);
11 if
12 :: (system_state_index == 5 )
13 -> goto S0;
14 :: (system_state_index == 7 )
15 -> goto S0;
16 :: (system_state_index == 6 )
17 -> goto S0;
18 :: (system_state_index == 0 )
19 -> goto S0;
20 :: (system_state_index == 3 )
21 -> goto S0;
22 :: (system_state_index == 4 )
23 -> goto S0;
24 :: (system_state_index == 2 )
25 -> goto S0;
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26 :: (system_state_index == 1 )
27 -> goto S0;
28 :: else -> goto done;
29 fi;
30 }
31 S0:
32 atomic {
33 system_state_index = 0; /*reset*/
34 system_state_index= system_state_index + ((p0) -> (1 << 2):0);
35 system_state_index= system_state_index + ((p1) -> (1 << 1):0);
36 system_state_index= system_state_index + ((p2) -> (1 << 0):0);
37 if
38 :: (system_state_index == 7 )
39 -> goto S1;
40 :: (system_state_index == 1 )
41 -> goto S0;
42 :: (system_state_index == 5 )
43 -> goto S0;
44 :: (system_state_index == 3 )
45 -> goto S0;
46 :: else -> goto done;
47 fi;
48 }
49 S1:
50 atomic {
51 system_state_index = 0; /*reset*/
52 system_state_index= system_state_index + ((p0) -> (1 << 2):0);
53 system_state_index= system_state_index + ((p1) -> (1 << 1):0);
54 system_state_index= system_state_index + ((p2) -> (1 << 0):0);
55 if
56 :: (system_state_index == 0 )
57 -> goto S1;
58 :: (system_state_index == 1 )
59 -> goto S1;
60 :: (system_state_index == 2 )
61 -> goto S1;
62 :: (system_state_index == 3 )
63 -> goto S1;
64 :: (system_state_index == 4 )
65 -> goto S1;
66 :: (system_state_index == 5 )
67 -> goto S1;
68 :: (system_state_index == 6 )
69 -> goto S1;
70 :: (system_state_index == 7 )
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71 -> goto S1;
72 :: else -> goto done;
73 fi;
74 }
75 done: /*signal property violation by landing here*/
76 skip;
77 }

Listing 6.7: Illustrating front det switch min abr state fin never claim en-
coding of the ButtonPushX formula.

Reducing Deterministic Encoding Size

The encodings above have as many as 2|Σ| transitions per state, sometimes fewer if multiple

valuations of Σ lead to automaton acceptance. To study the effect of code size on model-

checking performance of never claims, for det encodings utilizing state labels we can

create equivalent never claims with more compact code by abbreviating the transitions.

Employing edge abbreviation (ea) to the front det switch state fin encoding in

Listing 6.7 gives us the never claim in Listing 6.8.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 never {
3
4 init_S2:
5 atomic {
6 if
7 :: (1 )
8 -> goto S0;
9 :: else -> goto done;

10 fi;
11 }
12 S0:
13 atomic {
14 if
15 :: ((p2 && !p0) || (!p1 && p2) )
16 -> goto S0;
17 :: (p0 && p1 && p2 )
18 -> goto S1;
19 :: else -> goto done;
20 fi;
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21 }
22 S1:
23 atomic {
24 if
25 :: (1 )
26 -> goto S1;
27 :: else -> goto done;
28 fi;
29 }
30 done: /*signal property violation by landing here*/
31 skip;
32 }

Listing 6.8: Illustrating an intermediate version of the
front det switch min abr ea state fin never claim encoding of the
ButtonPushX formula, leaving off the trap state elimination algorithm.

We take advantage of the Promela semantics property that transitioning to a terminal

error state and failing to find such a transition are equivalent. This enables us to further re-

duce the code size for finite-acceptance never claims by employing trap state elimination

as we are abbreviating the edges to produce the final, edge abbreviated, never claim in

Listing 6.9.

1 /*LTL formula: (!(X ((p0 & p1) R p2)))*/
2 never {
3 init_S2:
4 atomic {
5 if
6 :: (1) -> goto S0;
7 fi;
8 }
9 S0:

10 atomic {
11 if
12 :: (!p2) -> goto done;
13 :: ((!p0 && p2) || (!p1 && p2)) -> goto S0;
14 fi;
15 }
16 done: /*signal property violation by landing here*/
17 skip;
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18 }

Listing 6.9: Illustrating the final front det switch min abr ea state fin
never claim encoding of the ButtonPushX formula.

In the encodings discussed above, the transition function of the automaton is encoded

using if statements. Alternatively, we can format our front encodings by declaring a

state look-up table in system memory that allows us to find the next state by indexing the

current state and an integer in {0, . . . , 2n − 1} called the system state index corre-

sponding to the current valuation of the set of system variables. We effectively streamline

the code of the never claim following the table declaration upon initialization; we can

look up the next state in the table in one operation. The idea behind this encoding is to po-

tentially avoid overhead associated with large if statements. The front det memory

table encoding declares the state-transition look-up table directly as a one-dimensional,

row-major array, illustrated in Listing 6.10.

1 /* LTL formula: (!(X ((p0 & p1) R p2)))*/
2 int current_state = 0;
3 int next_state = 0;
4 int system_state_index = 0;
5 int table[24];
6 never {
7
8 S0_init:/*initialize current here*/
9 atomic {

10 table[0] = 2; table[1] = 2; table[2] = 2; table[3] = 2;
11 table[4] = 2; table[5] = 2; table[6] = 2; table[7] = 2;
12 table[8] = 1; table[9] = 1; table[10] = 1; table[11] = 1;
13 table[12] = 1; table[13] = 1; table[14] = 1; table[15] = 1;
14 table[16] = -1; table[17] = 2; table[18] = -1; table[19] = 2;
15 table[20] = -1; table[21] = 2; table[22] = -1; table[23] = 1;
16
17 /*Calculate the system state index*/
18 system_state_index = 0; /*reset*/
19 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
20 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
21 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
22
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23 /*Lookup the next state in the table*/
24 next_state = table[current_state * 8 + system_state_index];
25 if
26 :: (next_state == -1) -> goto accept_stuck;
27 :: else -> goto S1;
28 fi;
29 }
30
31 S1: /*loop here forever if property holds*/
32 atomic {
33 current_state = next_state; /*update state*/
34 next_state = -1; /*reset*/
35
36 /*Calculate the system state index*/
37 system_state_index = 0; /*reset*/
38 system_state_index = system_state_index + ((p0) -> (1 << 2):0);
39 system_state_index = system_state_index + ((p1) -> (1 << 1):0);
40 system_state_index = system_state_index + ((p2) -> (1 << 0):0);
41
42 /*Lookup the next state in the table*/
43 next_state = table[current_state * 8 + system_state_index];
44 if
45 :: (next_state == -1) -> goto accept_stuck;
46 :: else -> goto S1;
47 fi;
48 }
49
50 accept_stuck: /*signal property violation by omega-looping here*/
51 skip;
52 }

Listing 6.10: Illustrating front det memory table min abr inf encoding of the
ButtonPushX formula.

6.3.7 Configuration space

The different options allow 26 possible combinations for generating a never claim, sum-

marized in Table 6.1.
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State
Minimization

Alphabet
Representation

Automaton
Acceptance

Never Claim
Encoding

State
Representation

no
BDDs

finite

infinite

front nondet

number

yes

back nondet

assignments

front nondet

back nondet

back det

front det memory table

front det switch
state

assignments
with edge

abbreviation

number
back det

number
front det memory table

Table 6.1 : The configuration space for generating never claims.

6.4 Experimental Methods

Platform We ran all tests on the Shared University Grid at Rice (SUG@R), an Intel Xeon

compute cluster.3 SUG@R is comprised of 134 SunFire x4150 nodes, each with two quad-

core Intel Xeon processors running at 2.83GHz and 16GB of RAM per processor. The OS

is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Each test was run with exclusive access to

one node. Times were measured using the Unix time command.

Benchmarks We define two major categories of model-checking benchmarks employing

the linearly-sized Universal Model (UM) from Chapter 3.5.1: one in which we scale the

model and one in which we scale the specifications. In the former case, we check all

encodings against the set of 14 model-scaling benchmarks described in Chapter 3.6.1 with

scaled universal models. In the latter case, we check a universal model with 30 variables

and 1,073,741,824 states against the scalable formulas described in Chapter 3.6.2.

3http://rcsg.rice.edu/sugar/
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It is interesting to note that we cannot use the counter formulas from Chapter 3.2 in

the set of formula-scaling benchmarks. Recall from Chapter 4.3.3 that we do not negate

the counter formulas before creating never claims from them because we want Spin to

check for the single counterexample satisfying the input counter formula, which is a chal-

lenging task. It is precisely this aspect of the counter formulas that make them excellent

benchmarks for LTL satisfiability checking yet poor benchmarks for LTL model checking

of safety formulas. Recall the basic process for model checking of safety formulas: we

take a safety property ϕ that states “something bad never happens,” we negate phi (now we

have “something bad happens”), we create a never claim from ¬ϕ, and model checking

with Spin returns a counterexample that is a finite trace from a start state to a state in which

something bad happens. In this process, our counter formulas correspond to ¬ϕ; to use

them as benchmarks for model checking instead of satisfiability checking, we would have

to negate them first, to get our desired input formula ϕ. While it is evident that the counter

formulas, in their positive form, are safety properties (indeed, two of them are syntactically

safe), the negations of our counter formulas are not safety properties. (Again, this can be

easily confirmed via the SPOT command ltl2tgba -O.) Incidentally, we also cannot

use the positive counter formulas as ϕ instead. Negated counter formulas make poor model

checking benchmarks in general; intuitively it is very easy to find a counterexample trace

that is not a binary counter.

Test Method We encode every benchmark LTL formula as a set of Promela never

claims using SPOT and the set of our novel encodings. We also experimented with scheck

[189] encodings; that tool produced too many bugs to be included in the data presented

here. Each never claim, was model checked by the Spin back-end.4

4We also investigated using the SPOT back-end; SPOT is unable to analyze Promela never claims at the
time of this writing.
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We measure model checking time separately from the times for various compilation

stages. This is important for two reasons. It is relevant for regression testing and system

debugging applications where the system is repeatedly changed but model checked against

the same specifications. It is also essential for demonstrating our claim that deterministic

encoding of LTL safety formulas can reduce model checking time; it is clear that we are not,

for example, encoding LTL formulas in a manner that compiles more quickly but requires

the same or more time to model check than the equivalent SPOT-encoding.

6.5 Experimental Results

Our experiments demonstrate that the new Promela never claims we have introduced

significantly improve the translation of LTL safety formulas into explicit automata, as

measured by model checking time. While it is sometimes the case than many, or all, of

our encodings incur less model checking time than SPOT’s encoding, we found that one

of our encodings is always best: front det switch min abr ea state fin. We

can consistently improve on the model checking time required for SPOT encodings by

using front det switch min abr ea state fin encoded never claims instead.

Therefore, we recommend an optimal encoding approach of encoding LTL formulas known

to be safety properties with our front det switch min abr ea state fin encod-

ing and all others with SPOT.

It is interesting to note that we found certain encoding aspects to be always better.

This helps explain why the front det switch min abr ea state fin encoding

is always the fastest: it is the encoding that combines all of the fastest never claim com-

ponents. In particular, we found the following trends to hold for encodings where all other

encoding components were the same.

• Deterministic (det) never claims are faster than determinized-on-the-fly (nondet)
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never claims.

• Finite acceptance (fin) is faster than infinite acceptance (inf).

• State labels (state) are faster than state numbers (number).

• Edge abbreviation (ea) always equates to better performance.

• There seems to be a positive correlation between the code size of a given never

claim and the required model checking time: smaller code runs faster. For exam-

ple, state labels are faster than state numbers and they generally require less code.

Encodings with Boolean-formula-labeled transitions are generally faster than those

requiring calculation of the (system state index). The memory table encod-

ings, which include large table declarations in addition to the computation of the

system state index to perform the table look-up are the least scalable; Spin

won’t even compile them for reasonably-sized formulas. Code size is important.

6.5.1 Sometimes Deterministic Automata Are Much Better Than Nondeterministic

Automata

For some benchmarks, we found that all of our encodings, whether they determinizedAd up

front or on the fly, required less model checking time than the equivalent nondeterministic

SPOT never claims.5 For example, for the iprot and sliding window benchmarks, pictured

in Figures 6.2(a) and 6.2(b), all of our new encodings performed better than SPOT, though

our front det switch min abr ea state fin encoding was best.

5Note that not all SPOT never claims are nondeterministic; for other benchmarks SPOT produced de-
terministic never claims.
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(a) Benchmarks for the iprot specification.
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(b) Benchmarks for the sliding window specification.

Figure 6.2 : Model scaling benchmarks, showing the model-checking execution times
based on the number of propositions in the UM.
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Deterministic encodings can result in significant improvements in model checking per-

formance by reducing calls to the internal nested depth-first search algorithm in the model

checker; see Chapter 2.8. Take for example the AccidentallySafe benchmark, which en-

codes the formula �(q ∨X�p) ∧ �(r ∨X�¬p). The SPOT encoding for the corresponding

never claim appears in Listing 6.11. As we increase the size of the universal model, the

time required to model check this never claim increases exponentially.

1 never { /* F((!p1 & XF!p0) | (!p2 & XFp0)) */
2 T0_init:
3 if
4 :: (!(p2)) -> goto accept_S2
5 :: ((1)) -> goto T0_S3
6 :: (!(p1)) -> goto accept_S4
7 fi;
8 accept_S2:
9 if

10 :: ((p0)) -> goto accept_all
11 :: (!(p0)) -> goto T0_S6
12 fi;
13 T0_S3:
14 if
15 :: (!(p2)) -> goto accept_S2
16 :: ((1)) -> goto T0_S3
17 :: (!(p1)) -> goto accept_S4
18 fi;
19 accept_S4:
20 if
21 :: (!(p0)) -> goto accept_all
22 :: ((p0)) -> goto T0_S7
23 fi;
24 T0_S6:
25 if
26 :: ((p0)) -> goto accept_all
27 :: (!(p0)) -> goto T0_S6
28 fi;
29 T0_S7:
30 if
31 :: (!(p0)) -> goto accept_all
32 :: ((p0)) -> goto T0_S7
33 fi;
34 accept_all:
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35 skip
36 }

Listing 6.11: Illustrating the SPOT never claim for the AccidentallySafe formula.

However, if we encode this same never claim deterministically, the time required to

model check this never claim remains near zero as we increase the size of the universal

model. For comparison, the front det switch min abr ea state fin encoding

of the AccidentallySafe benchmark appears in Listing 6.12. Why does this encoding take

so little time to model check? We can answer this question by examining the initial state,

init S1, in Listing 6.12. In this case, Spin initially explores the valuation where the

variables p0, p1, and p2 are false, in which case this never claim transitions directly to

done, causing Spin to skip the NDFS in the emptiness check. It is the NDFS that causes

the SPOT never claim to require exponentially increasing time to model check: note that

the initial state in Listing 6.11 has no equivalent deterministic path to termination.

1 /*LTL formula: (!([](p1 | (X [] p0)) & [](p2 | (X ([] ! p0)))))*/
2 never {
3 init_S1:
4 atomic {
5 if
6 :: (p2 && !p1 )
7 -> goto S2;
8 :: (p1 && p2 )
9 -> goto init_S1;

10 :: (p1 && !p2 )
11 -> goto S0;
12 :: else -> goto done;
13 fi;
14 }
15 S0:
16 atomic {
17 if
18 :: (p1 && !p0 )
19 -> goto S0;
20 :: else -> goto done;
21 fi;
22 }
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23 S2:
24 atomic {
25 if
26 :: (p0 && p2 )
27 -> goto S2;
28 :: else -> goto done;
29 fi;
30 }
31 done: /*signal property violation by landing here*/
32 skip;
33 }

Listing 6.12: Illustrating the front det switch min abr ea state fin never
claim for the AccidentallySafe formula.

6.5.2 We are consistently faster than SPOT.

Figures 6.3(a) and 6.3(b) show the median model checking times of randomly-generated

safety formulas, both completely randomly generated, as in Figure 6.3(a) and syntactically

safe randomly generated formulas, as in Figure 6.3(b). As these figures show, our median

model checking times over all non-trivial randomly generated formulas were consistantly

lower than for SPOT encodings.

Since we call SPOT as a step in our encoding, our median automaton generation times

were always higher than SPOT but, despite our inefficient implementation, were consis-

tently dwarfed by model checking times. For example, for the set of 5-variable, length

20 random formulas included in Figure 6.3(a), our median LTL-to-never claim time was

0.12 seconds, median Promela-to-C time was 0.0 seconds, median C-to-binary time was

0.23 seconds, and median model-checking time was 51.08 seconds. For SPOT encodings,

the median LTL-to-never claim time was 0.01 seconds, median Promela-to-C time was

0.0 seconds, median C-to-binary time was 0.25 seconds, and median model-checking time

was 1582.385 seconds. So, our CHIMP-Spin tool required in the median case about 12

times as much time to create a never claim as SPOT, though it is notable that this time
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Figure 6.3 : Graphs of median model-checking times for both categories of randomly-
generated formulas, showing that our median model checking times were consistently
lower than SPOT.
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Figure 6.4 : Graphs of automaton size for both categories of randomly-generated formulas,
showing that our automata sizes compared to SPOT.
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was still a fraction of a second. This trend holds for syntactically safe random formulas as

well. For example, for the set of 6-variable, length 20 random formulas included in Figure

6.3(b), our median LTL-to-never claim time was 0.13 seconds, median Promela-to-C time

was 0.01 seconds, median C-to-binary time was 0.26 seconds, and median model-checking

time was 34.195 seconds. For SPOT encodings, the median LTL-to-never claim time

was 0.01 seconds, median Promela-to-C time was 0.0 seconds, median C-to-binary time

was 0.26 seconds, and median model-checking time was 352.475 seconds.

Note that BRICS experienced some errors when encoding some of our randomly gen-

erated formulas. These cases were rare enough as to not affect our median results, i.e. for

the set of 500 5-variable, 15-length random formulas graphed in Figure 6.3(a), BRICS ex-

perienced nine errors. However, the occurrence of these errors during our LTL-to-never

claim phase combined with the consistent time difference between CHIMP-Spin and SPOT

for this phase mean that the total time required by CHIMP-Spin for LTL compilation plus

model checking was not always less than SPOT for randomly-generated formulas with

small model-checking times.

It is interesting to note that the difference in model checking time is not directly cor-

related with other statistics we measured, such as the length of counterexamples returned

for formula violations. Across all of the randomly-generated formula benchmarks, we

found that the number of states and the lengths of counterexamples associated with our

front det switch min abr ea state fin never claims and with SPOT’s were

usually very close, within a few states of each other. However, in general, the number of

transitions had a higher variance between these two encodings; in the median cases, we

ended up with less than or equal to the number of transitions in the equivalent SPOT never

claim, as shown in Figures 6.4(a) and 6.4(b). These two figures show the median number

of states and transitions for the two benchmarks in Figures 6.3(a) and 6.3(b), respectively.

While we found our winning encoding could always reduce the time required for model
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Figure 6.5 : While our best encoding always incurred the lowest model checking times, for
some instances of both formula scaling and model scaling benchmarks, our improvement
over SPOT was small.
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checking over that of the SPOT encoding for the same formula, we did find some bench-

marks where the difference was small. For example, for the M2 benchmark displayed

in Figure 6.5(a), the model checking time for never claims encoded by our front det

switch min abr ea state fin encoding is consistently slightly better than SPOT.

Out of all of our benchmarks, the ButtonPushX benchmark displayed the smallest dif-

ference between our encoding and SPOT, as shown in Figure 6.5(b). For example, for the

36-variable universal model, the SPOT never claim took 4606.94 seconds, or roughly

77 minutes whereas our never claim took 4281.22 seconds, or roughly 71 minutes, only

6 minutes less. Still, our front det switch min abr ea state fin encoding en-

coding enabled Spin to scale to model check a 40-variable model whereas model checking

the SPOT never claim timed out at 39 variables.

Note that for model-scaling benchmarks, the difference in compile time between SPOT

and CHIMP-Spin was negligible. For Figures 6.2(a), 6.2(b), and 6.5(b) SPOT takes ap-

proximately 0.01 seconds to construct a never claim from an LTL formula while our

inefficient CHIMP-Spin code takes about 0.1 seconds; for all data points shown in all three

figures, the Promela-to-C compilation time was too small to measure and the C-to-binary

compilation time was approximately 0.2 seconds. For formula-scaling benchmarks total

compile time scaled but was still dwarfed by model-checking time; for example, CHIMP-

Spin spent about 0.2 seconds creating a never claim for the 9-variable benchmark shown

in Figure 6.5(a).

6.6 Discussion

This chapter brought attention to the benefit of deterministic encoding of finite automata for

safety properties. We defined novel encodings of safety LTL properties as never claims

and showed that one encoding consistently leads to faster model checking times than the
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state-of-the-art SPOT encoding or any of our other new encodings. Therefore, we recom-

mend a two-encoding optimized front-end to the Spin model checker: use SPOT for the

optimal encodings of non-safety properties and use our new front det switch min

abr ea state fin encoding for known safety properties.

The size of the product automaton is not an accurate measure of performance when

there is a property violation since the decision of which transitions to explore first plays

a more crucial role. When the never claim is nondeterministic, the order of searching

transitions can make a big difference even when it does not change the semantics. Since

Spin search transitions in a certain order, shuffling the lines in a nondeterministic never

claim can have a dramatic impact on model-checking time. We demonstrated this problem

can be avoided in the case of safety properties via our winning deterministic encoding with

finite acceptance conditions. Our winning encoding is the combination of all of the best-

performing encoding components. In this way, our approach is extensible: others may find

other encoding components that are compatible with our winning components to improve

the model checking performance of never claims in the future.

Our results concur with the findings in Chapter 4.6 and [228] that automaton size, in

terms of number of automaton states, number of transitions, or both is not a reliable indi-

cator of the time required by the Spin model checker to check the specification automaton.

We found that sets of never claims representing different encodings of the same LTL

formula, with the same number of states and transitions, performed vastly differently from

each other in terms of model checking time. Interestingly, we did note a positive corre-

lation between the size and simplicity of the code comprising the never claim and the

model checking time. It seems to be the case that smaller, simpler never claims for the

same deterministic automaton tend to be faster to model check, whether they are smaller

because the code is more efficient or because they have fewer states or transitions. The

question of whether these results extend to other domains (i.e. symbolic model checking)
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is an interesting direction for a future investigation.
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Chapter 7

Conclusion

As safety-critical systems continue to grow in terms of both their number and their size, so

too grows the need to provide tools for rigorous verification. In response to the scale and

complexity of these systems and their specifications, it it highly likely that new techniques

for efficiently reasoning about them will continue to be developed. Future tools for LTL-

to-automata translation, whether they create explicit or symbolic automata, will need to be

both correct and scalable. We have provided a solid basis on which to build future tools in

terms of both addressing their performance, and creating better, more scalable translations.

In this chapter, we recap the work we have presented in this dissertation, briefly examine

its impact, and the discuss potential avenues for future research. In Section 7.1 we review

our major contributions and their impact to date. We address the future for each of the

areas of research we have contributed to in Section 7.2 before concluding with some final

remarks in Section 7.3.

7.1 Contribution Review

In this thesis, we address formal temporal specifications expressible in the popular logic

LTL. In accordance with the modern paradigm of property-based design that has been

adopted in response to the need for design-phase checks on today’s dependable systems,

we advocated for the adaptation of a new sanity check. We argued that each specification,

its negation, and the conjunction of all specifications should be checked for satisfiability

as an essential first step of the verification process. We demonstrated utilizing LTL model
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checkers to perform this test to help ensure we have specified the behaviors we intended,

before the system described is built to these requirements.

We established a set of rigorous benchmarks to enable more accurate assessment of

LTL-to-automaton translation performance in new ways, evaluating efficiency, scalability,

and correctness. Our benchmarks are valuable both in the context of LTL satisfiability

checking and LTL model checking. We released these benchmarks, along with benchmark-

generating code that produces our scaled benchmarks, on the web for widespread use in

evaluating new LTL-to-automaton translation algorithms.1

We presented a thorough examination of the state of the art in LTL-to-automaton trans-

lation, both for explicit and symbolic automata. We accomplished this by analyzing, in

depth, essentially all tools for LTL-to-automaton translation that were available at the time

of our study, measuring a wide range of statistics on each one. Where previous studies

used automaton size as a proxy for measuring performance, we demonstrated that these

two statistics were not correlated as closely as previously thought.

We created 29 novel encodings for LTL formulas as symbolic automata, where there

had only ever been one before. We introduced a new multi-encoding approach, running 23

of these encodings in parallel, and showed that this approach consistently bests the current

state of the art, performing up to exponentially better at LTL satisfiability checking. Our

LTL-to-symbolic automata translation tool, PANDA, has been released so that others may

add to this extensible framework.2

For the most common type of specifications, safety properties, we introduced 26 novel

encodings of LTL formulas as explicit automata, exploiting the inherent determinism in

these properties in order to improve the performance of the model checking step. Indeed,

1http://ti.arc.nasa.gov/m/profile/kyrozier/benchmarking_scripts/
benchmarking_scripts.html

2http://ti.arc.nasa.gov/m/profile/kyrozier/PANDA/PANDA.html
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we have shown we can consistently reduce the time required to perform model checking

using safety specifications by replacing the current state of the art encoding by our one best

encoding, which we call front det switch min abr ea state fin.

7.1.1 Impact

The world of Linear Temporal Logicians was clearly hungry for a set of quality benchmarks

for fairly evaluating algorithms that reason about LTL formulas. Our benchmarks have been

downloaded and used to evaluate all relevant algorithms that we know of since their initial

publication; see for example [53, 232, 54, 233, 234].

Our evaluation of LTL-to-automaton algorithms has inspired others to more carefully

choose the algorithms and tools they use for this critical step in the verification process. The

author of SPOT utilized our benchmarks in fixing the rare bug we uncovered in his tool;

our benchmarks continue to be used to demonstrate the quality of successive versions of

SPOT. Since our original study, others have cited our work as an influence in their choice

of the two best explicit translators, SPOT and LTL2BA, for LTL-to-automata [235, 236,

237, 187, 238, 239, 240]. Similarly, this work influenced the choice of SMV and symbolic

LTL-to-automata for LTL satisfiability checking [241, 242]. It has also influenced others

to adopt satisfiability checking as a standard sanity check [46, 243, 244].

Only months after our study was published, our work on a multi-encoding approach

for symbolic LTL satisfiability checking has already been built upon. Others advocated

for a related multi-encoding approach for LTL satisfiability [234]. PANDA has also al-

ready been used in a full-scale real-world verification project to enable better scalability

for specification debugging for an automated air traffic control system at NASA [245].
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7.2 Future Work

Perhaps the most obvious direction for future work is devising new explicit or symbolic

encodings of LTL formulas, evaluating them utilizing our standardized benchmarks, and

adding the best-performing ones to our current tools to further improve the empirical per-

formance of LTL satisfiability and model checking. While we certainly expect to see work

in this direction in the near future (and indeed others have already started building upon

our work to create additional encodings), there are also many other future directions worth

pursuing.

7.2.1 Future Work on LTL-to-Symbolic Automata

LTL symbolic model checking is ideal for the verification of reactive systems, or those

systems that operate within a dynamic environment such as concurrent programs, embed-

ded and process control programs, and operating systems. LTL allows us to naturally and

organically specify reactive systems in terms of their ongoing behavior. By shifting the

focus of the state explosion problem from the size of the state space (as in explicit-state

model checking) to the size of the BDD representation, symbolic model checking can be

used to verify much larger systems. Though the time complexity bottleneck of the LTL

symbolic model-checking algorithm is arguably the translation step from ϕ to A¬ϕ, there

are numerous facets of the algorithm worth optimizing, not all of which were mentioned

above. Given the promise of this method of formal verification and the real-world verifica-

tion successes so far, optimization of virtually every segment of this algorithm is a possible

subject for future research.

While our idea of exploiting the inherent determinism of safety properties to create

new encodings to speed up model checking performance was very successful in the ex-

plicit model checking domain, it remains an open question whether a similar feat might
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be possible in the symbolic model checking domain. For example, it is not clear whether

there are equivalent symbolic encodings of LTL safety properties to the explicit encodings

we presented in Chapter 6. If we can devise such encodings, would they provide a simi-

lar performance boost in the domain of symbolic model checking? And if so, would it be

worthwhile to expand our PANDA tool to add these new encodings? These are questions

we plan to pursue in the future.

We plan to utilize and build upon our tool, PANDA, in additional ways. Since our new

symbolic encodings triggered such a dramatic, sometimes exponential, increase in perfor-

mance for symbolic LTL satisfiability checking, it is worthwhile to conduct a rigorous study

to answer the question of whether we can similarly boost LTL symbolic model checking

performance. We may also be able to expand PANDA to produce symbolic automata in

Promela as well as the current output in SMV language. This could potentially lead to

speed-ups for explicit LTL satisfiability checking and explicit model checking with Spin.

Perhaps the lessons learned from our study and creation of PANDA may spur encoding

improvements for other related logics as well. For example, we plan to adapt PANDA to

efficiently encode fragments of the new logic CSSL, a logic for specifying conditional sce-

narios [246]. CSSL formulas are comprised of pairs of LTL formulas connected by CSSL

operators at the top level. It may be the case that we can reduce the time required to model

check CSSL formulas in practice by utilizing PANDA’s arsenal of symbolic automata en-

codings.

7.2.2 Future Work on LTL Model Checking of Safety Properties

In practice, a significant fraction of the complexity of the best LTL-to-explicit automaton

translation presented in Chapter 6 is attributed to accommodating artifacts of the BRICS

automaton tool. We translate into and out of formats readable by BRICS, modify the transi-

tion labels created by BRICS, prune trap states from the BRICS automaton, and catch cases
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where BRICS scalability limitations prevent us from completing the LTL-to-automaton

translation. Now that we know the resulting never claim is advantageous, in the future

we could produce it more efficiently by implementing a homegrown version of BRICS to

better serve our needs.

Other future directions for this work include lobbying the creators of the model checker

Spin to enable Promela specifications to be compiled once and used for model checking

many times. This, combined with our more efficient never claims could significantly re-

duce the time engineers spend using Spin for system verification. We also envision adding

an automated dual-encoding front-end to Spin that could automatically check if the input

LTL formula is a safety formula (i.e. checking for syntactic safety can be done very effi-

ciently) and then create the never claim using our front det switch min abr ea

state fin encoding if this is the case and using SPOT if it is not.

7.3 Concluding Remarks

As more and more functions in our everyday lives become automated, the need for formal

verification rises as well; we entrust our safety to these systems. It becomes ever more

important that the methods we use for formal verification are both correct and scalable.

However, previous LTL-to-automaton translation algorithms did not achieve these goals,

as our extensive survey of LTL-to-automaton translation tools showed. We have changed

the way LTL-to-automaton translation algorithms are evaluated and provided more scalable

translations in both the explicit and the symbolic domains. We have pushed the state of the

art and provided a solid foundation on which we and others can build (indeed on which

many have already begun building).

We have brought attention to promising but previously neglected areas of LTL-to-

automaton translation for specification debugging via satisfiability checking and for model
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checking. We have established a de facto standard set of benchmarks that aid in the devel-

opment of new, correct, LTL-to-automaton translations and used these benchmarks in the

development of our own translation algorithms. We have demonstrated a significant im-

provement in scalability over the previous state of the art. Our approaches to both explicit

and symbolic LTL-to-automaton translation are extensible. We expect others to build upon

them in the future and improve upon our empirical results as we have done for those that

came before us. We believe our approaches to explicit and symbolic LTL-to-automaton

translation provide practical methods to tackle many current verification problems, and

provide a foundation upon which to develop new research that has the potential to provide

understanding of even more complex systems, allowing system architects to efficiently per-

form specification debugging and model checking on future safety-critical systems.
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