RICE UNIVERSITY

Explicit or Symbolic Translation of Linear Temporal Logic
to Automata

by

Kristin Yvonne Rozier

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

ApPROVED, THESIS COMMITTEE:

Ao, bg

Moshe Y. Vardi, Chair
Karen Ostrum George Professor in
Computational Engineering

M‘a Kw«lv\- -
Lydia E. Kavraki 0

Noah Harding Professor of Computer
Science and Bioengineering

=]
| /_/
Peter J. Varman

Professor of Electrical and Computer
Enginecering

Houston, Texas

April, 2012



UMI Number: 3578389

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI

—
Dissertation Publishing

UMI 3578389
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 - 1346

www.manharaa.com




RICE UNIVERSITY

Explicit or Symbolic Translation of Linear Temporal Logic
to Automata

by

Kristin Yvonne Rozier

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Moshe Y. Vardi, Chair
Karen Ostrum George Professor in
Computational Engineering

Lydia E. Kavraki
Noah Harding Professor of Computer
Science and Bioengineering

Peter J. Varman
Professor of Electrical and Computer
Engineering

Houston, Texas

April, 2012

www.manaraa.com



ABSTRACT

Explicit or Symbolic Translation of Linear Temporal Logic to Automata

by

Kristin Yvonne Rozier

Formal verification techniques are growing increasingly vital for the development of
safety-critical software and hardware in practice. Techniques such as requirements-based
design and model checking for system verification have been successfully used to verify
systems for air traffic control, airplane separation assurance, autopilots, CPU logic designs,
life-support, medical equipment, and other functions that ensure human safety.

Formal behavioral specifications written early in the system-design process and com-
municated across all design phases increase the efficiency, consistency, and quality of the
system under development. We argue that to prevent introducing design or verification er-
rors, it is crucial to test specifications for satisfiability. We advocate for the adaptation of
a new sanity check via satisfiability checking for property assurance. Our focus here is on
specifications expressed in Linear Temporal Logic (LTL). We demonstrate that LTL satisfi-
ability checking reduces to model checking and satisfiability checking for the specification,
its complement, and a conjunction of all properties should be performed as a first step to
LTL model checking.

We report on an experimental investigation of LTL satisfiability checking. We introduce
a large set of rigorous benchmarks to enable objective evaluation of LTL-to-automaton al-
gorithms in terms of scalability, performance, correctness, and size of the automata pro-

duced:Forexplicit-model checking, we use the Spin model checker; we tested all LTL-

www.manaraa.com



to-explicit automaton translation tools that were publicly available when we conducted our
study. For symbolic model checking, we use CadenceSMV, NuSMYV, and SAL-SMC for
both LTL-to-symbolic automaton translation and to perform the satisfiability check. Our
experiments result in two major findings. First, scalability, correctness, and other debili-
tating performance issues afflict most LTL translation tools. Second, for LTL satisfiability
checking, the symbolic approach is clearly superior to the explicit approach.

Ironically, the explicit approach to LTL-to-automata had been heavily studied while
only one algorithm existed for LTL-to-symbolic automata. Since 1994, there had been es-
sentially no new progress in encoding symbolic automata for BDD-based analysis. There-
fore, we introduce a set of 30 symbolic automata encodings. The set consists of novel com-
binations of existing constructs, such as different LTL formula normal forms, with a novel
transition-labeled symbolic automaton form, a new way to encode transitions, and new
BDD variable orders based on algorithms for tree decomposition of graphs. An extensive
set of experiments demonstrates that these encodings translate to significant, sometimes ex-
ponential, improvement over the current standard encoding for symbolic LTL satisfiability
checking.

Building upon these ideas, we return to the explicit automata domain and focus on
the most common type of specifications used in industrial practice: safety properties. We
show that we can exploit the inherent determinism of safety properties to create a set of
26 explicit automata encodings comprised of novel aspects including: state numbers ver-
sus state labels versus a state look-up table, finite versus infinite acceptance conditions,
forward-looking versus backward-looking transition encodings, assignment-based versus
BDD-based alphabet representation, state and transition minimization, edge abbreviation,
trap-state elimination, and determinization either on-the-fly or up-front using the subset
construction. We conduct an extensive experimental evaluation and identify an encoding
that offers the best performance in explicit LTL model checking time and is constantly

faster than the previous best explicit automaton encoding algorithm.

www.manaraa.com



Contents

Abstract ii
List of Illustrations viii
List of Tables Xii
Introduction 1
1.1 Motivation . . . . . . . . . oL e e e 4
1.2 Model Checking . . . . . . .. ... .. . 6
1.3 Linear Temporal Logic . . . . . .. ... ... ... ... ... ...... 8
1.4 Satisfiability Checking for Property Assurance . . . . . . . ... ... ... 10
1.5 Explicit versus Symbolic Model Checking . . . . . .. ... ... ..... 12
1.6 Results. . . . . . . . . 14

1.6.1 Challenges . . . . . .. . .. . . e 14

1.6.2 Contributions . . . . . . . .. ... 15
1.7 Organization of the Dissertation . . . . . . ... ... ... ........ 17
Linear Temporal Logic Model Checking Theory 18
2.1 Modeling the System . . . . . . ... ... ... 18

2.1.1 Modeling Limitations . . . . . . . ... ... ... ........ 20
2.2 Specifying the Behavior Property: Linear Temporal Logic . . . . .. . .. 21

2.2.1 Temporal Logics . . . . . . .. .. ... ... 22

2.2.2 Logical Expressivenessof LTL . . . . . . .. ... ... ...... 28
2.3 Specification Debugging via Satisfiability Checking . . . . . . .. ... .. 38
24 LTL-to-Automaton . . . . . . . . . . . . ittt ii e 40
2.5 Safety versus Liiveness . . . . . . . . ... e 47

www.manaraa.com



2.5.1 Speciftying the Property as an Automaton . . . . .. ... ... .. 52
2.6 LTL — SymbolicGBA . . . . . .. . .. .. .. . . 53
2.7 Combining the System and Property Representations . . . . . . ... ... 56
2.8 Checking for Counterexamples: Explicitly . . . . . . ... ... ... ... 62
2.9 Representing the Combined System and Property using BDDs . . . . . .. 63
29.1 Representing Automata UsingBDDs . . . . ... ... ... ... 69
29.2 BDDOperations . . . . . . .. ..o 72
2.10 Checking for Counterexamples: Symbolically . . . . . ... ... ... .. 77
2.10.1 Automataas Graphs . . . ... ... ... ... ... ... ... 81
2.10.2 Symbolic Methods for Graph Traversal . . . . ... ... ... .. 85
2.10.3 SCC-hull Algorithm for Compassionate Model Checking . . . . . . 89
211 Discussion . . . . . . o ..o e e e e 95
Establishing Better Benchmarks 97
3.1 Importance of Good Benchmarks . . . . . ... ... ... ... .. .... 98
3.2 Counter Formulas . . . . . . .. .. .. ... ... 101
3.3 Pattern Formulas . . . . .. ... ... .. o 104
34 RandomFormulas. . . . .. ... ... ... ... L 106
3.5 Scalable Universal Model . . . . . . . ... ... ... .. ... .. ... 108
3.5.1 Explicit Universal Model . . . . . . .. ... ... ... ...... 108
3.5.2 Symbolic Universal Model . . . . . . ... ... ... ....... 110
3.6 Benchmarks for Model Checking of Safety Properties . . . . . . .. .. .. 112
3.6.1 Model-Scaling Benchmarks . . . . ... ... ........... 113
3.6.2 Formula-Scaling Benchmarks . . . . ... ... ... ....... 114
3.7 Checking COrrectness . . . . . . . . v v v v v v vt e e 116
3.8 Measurement and Analysis . . . . ... ... oL L Lo 117
LTL Satisfiability Checking 121
41 Introduction . . . . . . . . . . . e e e 121

www.manaraa.com



vi

4.2 Tools for LTL-to-Automata . . . . . . . . . .. ... ... 124
42.1 ExplicitTools . . . . . . . . . . ... . 124
422 SymbolicTools . . . . ... ... ... 128
4.3 Experimental Methods . . . . ... ... ... ... L. 129
4.3.1 Performance Evaluation . . ... ... ... ... .. ... .... 129
432 InputFormulas . . ... ... ... ... ... ... ... ... . 129
433 ExplicitTools . . . . . . . .. .. . 129
434 SymbolicTools . . . . .. ... ... ... ... ... 130
4.4 The Scalability Challenge . . . . . . . . . ... ... ... ... ...... 131
4.5 Graceless Degradation . . . . ... ... .. ... ... ... 134
4.6 Relation of Size to Efficiency . . . . . ... .. ... ... .. .. ... 138
4.7 Symbolic Approaches Outperform Explicit Approaches . . . . . . ... .. 139
4.8 Discussion. . . . ... 145

A Multi-Encoding Approach for LTL Symbolic Satisfiability Check-

ing 146
5.1 Introduction . . . . . . . . ... 146
5.2 Preliminaries . . . . . . . .. . 150

5.2.1 CadenceSMV and NuSMV Semantic Subtleties . . . . . .. .. .. 153
5.3 Encoding Symbolic Transition-based Generalized Biichi Automata . . . . . 155
5.4 A Set of 30 Symbolic Automata Encodings . . . ... ... ........ 163
5.5 Experimental Methodology . . . . . . ... ... ... ........... 166
5.6 Experimental Results . . . . . .. .. ... ... .. .. 167

5.6.1 Application Benchmarks . . . . . ... .. ... .. ........ 173
57 Discussion . . . . . . ... e e 176

Improved Algorithm for Explicit LTL Satisfiability and Model
Checking 179

www.manaraa.com



vii

6.1 Introduction . . . . . . . . ... L 179
6.2 Theoretical Background . . . . . . . . ... ... o L oL 183
6.3 Never Claim Generation . . . . . . . . . . .. .. .. ... ... 186
6.3.1 FormingaNeverclaim . ... ... ................ 186
6.3.2 Never claims for finite behavior . . . . .. ... ... ... ... 187
6.3.3 Determinization. . . . . . . . . .. ..o 188
6.3.4 State minimization . . . . . . .. .. ..o 188
6.3.5 Alphabet representation [187] . . . . .. ... ... ... ..... 189
6.3.6 Neverclaimencodings . .. ... .. ... ... ... ...... 192
6.3.7 Configuration space . . . . . . . . .. ... 210
6.4 Experimental Methods . . . . . ... ... .. ... ... .. .. ... 211
6.5 Experimental Results . . . . .. ... ... ... ... ... ...... 213

6.5.1 Sometimes Deterministic Automata Are Much Better Than

Nondeterministic Automata . . . . . . . ... ... ... ..... 214

6.5.2 We are consistently faster than SPOT. . . . .. ... ... ..... 218

6.6 DISCUSSION . . . . . . . . . o e e e e 223
Conclusion 226
7.1 Contribution Review . . . . . .. ... ..o o 226
7.1 Impact . . ..o e 228

7.2 Future Work . . . . . ... 229
7.2.1  Future Work on LTL-to-Symbolic Automata . . . . . .. .. ... 229

7.2.2  Future Work on LTL Model Checking of Safety Properties . . . . . 230

7.3 ConcludingRemarks . . . ... ... ... ... .. ... ... . ... 231
Bibliography 233

www.manaraa.com



Illustrations

1.1 System diagram illustrating the model checking process. . . . . .. .. .. 2
1.2 Examples of LTL properties. . . . . . . . . . .. ... ... .. ...... 9
2.1 Syntax of LTLand CTL. . . . . ... .. ... ... ... . ... ..... 29
2.2 Venn diagram showing the expressiveness of common temporal logics. . . . 30

2.3 A situation where the LTL formula ¢Op holds but the CTL formula

(ACAOp) doesnot. . . . . . . . . e 33
2.4 A situation where the three equivalent formulas LTL formula X< p, LTL

formula ¢X p, and CTL formula AXAC p hold but the CTL formula

(AOAKX p), which is strictly stronger, doesnot. . . . . . ... ... .... 33
2.5 A counterexample trace takes the form of an accepting lasso. Again, the

start state is designated by an incoming, unlabeled arrow not originating at

any vertex. Here, F; ... F, represent final states satisfying four acceptance

conditions. . . . . . . ... e e e e e 52
2.6 Pseudocode representation of the NDFS algorithm from [57]. . . . . . . .. 63

2.7 Conversion of a Binary Decision Tree for x; V x, V x3 into a Binary

Decision Diagram. . . . . . . .. ... L Lo o 66
2.8 BDDs for the function (x; Ay;)) V(o Ay2)) V(X3AY3). o o v v v oo . 72
2.9 Pseudocode for the Buip algorithm from [166]. . . . . . .. ... ... .. 73
2.10 The Appry and AppLy-sTEP algorithms from [159]. . . . . . . ... ... .. 75
2.11 Pseudocode for the SatisFy-onE algorithm from [159]. . . . . . .. ... .. 76
2.12 Pseudocode for the FeasiBLE algorithm from [37]. . . . . ... ... .. .. 91

www.manaraa.com



iX

2.13 Pseudocode of the path algorithm from [37]. . . . . . ... ... ... ... 93

2.14 Pseudocode for the witngss algorithm from [37]. . . . . ... .. ... .. 94

3.1 Example of a 2-bit binary counter automaton (where a = marker; and b =
COUNLET). . . . o o e e e e e e e e e e e e e e e e e 102

3.2 Composition of random formula benchmarks. . . . . . ... ... ... .. 107

4.1 Graph showing the total processing time for 2-variable counter formulas

when correct results were obtained, based on the number of bits in the

binary counter. . . . . .. ... L 132
4.2 Graph showing the total processing time for 2-variable linear counter

formulas when correct results were obtained, based on the number of bits

inthe binary counter. . . . . . . . .. ... oL 132
4.3  Graph showing the total processing time for 3-variable linear counter

formulas based on the number of bits in the binary counter. . . . . . . . .. 133
4.4 Median automated generation times for random formulas with P = 0.5

and N = 2 based on formulalength. . . . .. ... ... ... ....... 135
4.5 Median model analysis times for random formulas with P = 0.5 and

N =2based on formulalength. . . . . ... ... ... ........... 135
4.6 Median total run times and number of automata states for E class

formulas, based on the number of variables in the formula. . . . . . .. .. 136
4.7 Graph showing the degredation of proportion of correct claims for random

formulas where P = 0.5 and N = 3 based on the length of the random

4.8 Graph of the number of states in the automata representing 2-variable
counter formulas, based on the number of bits in the binary counter. . . . . 140
4.9  Graph of the number of states in the automata representing 2-variable

linear counter formulas, based on the number of bits in the binary counter. . 140

www.manaraa.com



4.10 Graphs showing the number of states and transitions in the automata
representing 3-variable random counter variables, based on the length of
the formula when correctness was 90% or better. . . . . . . ... ... .. 141
4.11 Graphs showing the median total run time and the number of states in the
automata representing U-class, based on the number of variables in the
formulas. . . . . ... 143
4.12 Graphs showing the median automata generation times and the median

model analysis times for random formulas with P = 0.5 and N = 3, based

on the length of the formula when 90% or better are correct. . . . . . . .. 144
5.1 NNF/sloppy/GBA encoding for CadenceSMV. . . . . . . ... .. ... ... 165
5.2 NNF/sloppy/TGBA encoding for CadenceSMV. . . . . . . ... ... ... 165
5.3 Optional caption for list of figures . . . . . ... ... ... ... ..... 165

5.4 Median model analysis time for R(n) = A\i_, (GF p; V F Gpi+1) for

PANDA NNF/sloppy/GBA/naive, CadenceSMYV, and the best BNF

encoding. . . . . ... 169
5.5 Bestencodings of 500 3-variable, 160 length random formulas. Points fall

below the diagonal when NNFisbetter. . . . . .. ... ... ....... 169
5,6 Ry(n)=(.(p1Rp2)R ...)R p,. PANDA’s NNF/sloppy/TGBA/LExP

encoding scales better than the best GBA encoding,

NNF/sloppy/GBA/naive, and exponentially better than CadenceSMV. . . . 171
5.7 Best encodings of 500 3-variable, 180 length random formulas. Points fall

above the diagonal when GBA isbetter . . . ... ... ... ....... 171
58 Umn)=(..(p1Upy) U ...)U p,. PANDA’s NNF/sloppy/TGBA/LEXP

5.9 Best encodings of 500 3-variable, 140 length random formulas. Points fall

below the diagonal when sloppy encodingisbest. . . . . . . ... ... .. 172

www.manaraa.com



xi

5.10 Best encodings of 500 3-variable, 195 length random formulas. Points fall
above the diagonal when naive variable orderisbest. . . . . .. ... ... 174

5.11 Maximum states analyzed before space-out. CadenceSMV quits at 10240

states. PANDA’s NNF/fussy/TGBA/LExXP scales to 491520 states. . . . . . 174
5.12 Cactus plot: median model analysis time over all application benchmarks

for CadenceSMV and the best PANDA encoding. . . . . . ... ... ... 176
6.1 System Diagram illustrating the Spin model checking process. . . . . . . . 183

6.2 Model scaling benchmarks, showing the model-checking execution times

based on the number of propositionsinthe UM. . . . . . .. ... .. ... 215
6.3 Graphs of median model-checking times for both categories of

randomly-generated formulas, showing that our median model checking

times were consistently lower than SPOT. . . . . ... ... ... .. ... 219
6.4  Graphs of automaton size for both categories of randomly-generated

formulas, showing that our automata sizes compared to SPOT. . . . . . .. 220
6.5 While our best encoding always incurred the lowest model checking

times, for some instances of both formula scaling and model scaling

benchmarks, our improvement over SPOT was small. . . . . ... ... .. 222

www.manaraa.com



Tables

1.1 Definition of Model Checking. . . . . . . ... .. ... ... ....... 7

2.1 List of the operators of propositional logic. . . . . . .. .. .. ... .... 22

2.2 Table comparing explicit and symbolic model-checking algorithms.
Recall that el(—¢) is the set of elementary formulas of ¢ as defined in
Chapter 2.6. We presume the ROBDDs for M and —¢ are created using
the appropriate variants of the BuiLp algorithm [166]. The ROBDD for
Ay, - 18 created by an extension of the algorithm AppLy(A, ROBDDy,,
ROBDD_g) [166], implementing the dynamic programming
optimizations that result in lower time-complexities. Finally, the algorithm
used for finding a counterexample given an ROBDD is based on ANYSaAr
[166]. Note that, for both explicit and symbolic model checking, multiple
steps above are performed at once, using on-the-fly techniques, which
increases the efficiency of the process and may avoid constructing all of

Ay, —o. We separate out the steps here for simplicity only. . . . . . . .. .. 78

3.1 The counterexample trace for a 4-bit counter, including marker bit m,

binary counter stream b, and carry bitc. . . . . ... ..o 105
3.2 Industrial safety formulas used in model-scaling benchmarks. . . . . . . . . 113
4.1 List of tools for translating LTL formulas into explicit automata. . . . . . . 125

www.manaraa.com



6.1 The configuration space for generating never claims. . . .. .. ... .. 211

www.manharaa.com




Chapter 1

Introduction

Safety-critical systems have become ubiquitous in our everyday lives and grow increas-
ingly complex every year. They fly our planes, control our nuclear power plants, run our
medical devices, and so much more. Yet, how do we know they are safe? We can use
formal methods for the design, specification, and verification of life-critical hardware and
software systems. Formal methods refers to a collection of verification techniques, all of
which entail the utilization of mathematical logic, to provide checks of correctness with a
very high level of assurance. Verification of a software or hardware system involves check-
ing whether the system in question behaves as it was designed to behave; i.e. it answers the
question, “Does the system as we have designed it have the intended emergent behaviors?”’
(If it does not, it is desirable to find out early in the design process!) Design Validation
involves checking whether a system design incorporates the system requirements; i.e. it
answers the question, “Does the logical system representation accurately encapsulate the
system design?”’ These tasks, system verification and design validation, can be accom-
plished thoroughly and reliably using formal methods.

Due to its automated nature and ease of use, model checking [1, 2] has become one of
the most widely-used formal methods. Model checking is the formal process through which
a desired behavioral property (the specification) is verified to hold for a given system (the
model) via an exhaustive enumeration (either explicit or symbolic) of all reachable system
states and the behaviors that cause the system to transition between them. If the specifica-

tion is found not to hold in all system executions, a counterexample is produced, consisting

www.manaraa.com



of a trace of the model from a start state to an error state in which the specification is vio-
lated, providing a very helpful tool for debugging the system design; see Figure 1.1. Model
checking has enjoyed broad industrial adaptation and has been successfully used to verify
systems such as air traffic control, airplane separation assurance, autopilots, CPU designs,
life-support systems, medical equipment (such as devices that administer radiation), and
many other systems that ensure human safety. Since model checking requires the writ-
ing of formal properties, it has also helped fuel the industrial adoption of property-based

design, wherein formal specifications are written early in the system-design process and

communicated across all design phases [3, 4, 5, 6, 7].
Combine

Negate
=
Model and
System Specification
Model

A

Is
Combination
Empty?

DONE!

Fix Counterexample
System | Returned

\

Figure 1.1 : System diagram illustrating the model checking process.

For example, in the field of aeronautics, several full-scale air traffic control systems
have been successfully verified using model checking techniques stemming from those we
discuss here. Symbolic model checking [8] in SMV [9] was used to verify the system re-
quirements specification for the Traffic Alert and Collision Avoidance System (TCAS II),
an air traffic guidance system required onboard large commercial aircraft [10]. Properties

checked included the absence of undesirable nondeterminism, mutual exclusion, termina-

www.manaraa.com



tion, absence of references to undefined parameters, and elimination of inconsistencies in
the protocol specification. SMV also enabled verification of the A-7E aircraft software re-
quirements to ensure internal aircraft modes were consistently enabled so that procedures
for monitoring the aircraft’s windspeed, velocity, and alignment accurately contribute to
the aircraft’s calculated relative position [11]. The Small Aircraft Transportation System
(SATS), which represents an approach to air traffic management for non-towered non-radar
airports in the United States, was model checked to verify the absence of deadlocks, that
aircraft separation is maintained, and that the system is robust in the face of unexpected
rare events such as equipment failures or aircraft deviating off-course [12]. A prototype
for NASA’s Tactical Separation Assured Flight Environment (TSAFE), which provides air-
craft conflict detection and resolution, was also model checked to verify the absence of
synchronization faults, employing compositional verification techniques [13].

Rockwell Collins and the University of Minnesota developed a translator framework,
in coordination with NASA’s Aviation Safety Program, that was successfully used to verify
many complex industrial avionics systems [14]. The ADGS-2100 Adaptive Display and
Guidance System Window Manager is a Rockwell Collins product that ensures the data
from different applications is routed to the correct heads-down and heads-up displays and
performs display management in next-generation commercial aircraft. NuSMV [15], via
this translator framework, was used early in the design process to ensure that the ADGS-
2100 does not contain logic errors that could make critical flight information unavailable
to the flight crew [16]. Similarly, NuSMV was utilized in verifying that the mode logic
of the FCS 5000, a new family of Flight Control Systems, met system requirements [17].
The translator framework was also critical in the verification for Phase I and Phase II of the
Certification Technologies for Advanced Flight Critical Systems (Cer-TA FCS) program

of the U.S. Air Force Research Laboratory (AFRL) [18]. For Phase I, NuSMV was used

www.manaraa.com



to check against Operational Flight Program (OFP) requirements for an unmanned aerial
vehicle, resulting in significant modifications to the final system to address errors uncovered
in the original Redundancy Management logic that were not uncovered by testing. For
Phase II, Prover [ 19] was used to verify whether the six actuator commands for the aircraft’s
control surfaces would always be within dynamically computed upper and lower limits,

indicating design errors for another UAV.

1.1 Motivation

The time-honored techniques of simulation and testing also address similar questions and
are extremely useful debugging tools in early stages of system design and verification. Both
of these methods involve checking the system’s behavior on a large, but rarely exhaustive,
set of expected inputs. However, as a system is refined, the remaining bugs become fewer
and more subtle and require more time to uncover. A major gap in the process of using
simulation and/or testing for verification and validation is that there is no way to tell when
these techniques are finished, i.e., when all of the bugs in the system have been found. In
other words, testing and simulation can be used to demonstrate the presence of bugs but
not the absence of bugs. It is not even possible to accurately estimate how many bugs re-
main [20]. Another open question is that of coverage, of both the possible system inputs
and the system state space. Coverage refers, respectively, to the completeness of the set
of system inputs or to the completeness of the specification, such that a set of inputs or a
system state is considered “uncovered” if it is not essential to the success of the verification
procedure [21, 22]. Quite simply, it has been proved that testing and simulation cannot
be used to guarantee an ultra-high level of reliability within any realistic period of time
[23]. For some systems, this is an acceptable risk. For these systems, it is enough to re-

duce the bug level below a certain measurable tolerance, for example in terms of frequency

www.manaraa.com



in time. For safety-critical systems, or other systems, such as financial systems, where
reliability is key because failures can be potentially catastrophic, we require an absolute
assurance that the system follows its specification via an examination of all possible behav-
iors, including those that are unexpected or unintended. This assurance is provided by a
design-for-verification paradigm incorporating property-based design and model checking.
Design-for-verification refers to a method for incorporating verification as a top consider-
ation of the design process via extending software design best practices to enable better
automated verification [24, 25, 26, 27].

While there are a range of different techniques for formal verification, model checking
is particularly well-suited to the automated verification of finite-state software and hard-
ware systems [28]. Once the system model and specification have been determined, the
performance of the model-checking step is often very fast, frequently completing within
minutes [20]. The counterexample returned in the case where a bug is found provides
necessary diagnostic feedback. Furthermore, iterative refinement and re-checking of the
failed specification can provide a wealth of insight into the detected faulty system behavior.
Model checking lends itself to integration into industrial design life-cycles as the learning
curve is quite shallow and easily outweighed by the advantages of early fault detection. The
required levels of user interaction and specialized expertise needed to effectively utilize a
model checker are minimal compared to other methods of formal verification. Moreover,
partial specifications can be checked, allowing verification steps to occur intermittently
throughout system design. However, there is a trade-off between the high level of automa-
tion provided by model checking and the high level of expressiveness and control that may
be required for verification in some cases. For this reason, certain systems benefit from the
use of alternative verification techniques, such as theorem proving, which involves proving

using formal deduction that the formal system model implies the desired properties. Still,

www.manaraa.com



model checking’s high level of automation makes it a preferable verification method where
applicable since the performance time and quality of insight obtained from a negative result
when using theorem proving for verification are highly dependent on the particular skill set
of the person providing the proof.

Currently, using a design-for-verification paradigm incorporating property-based de-
sign and model checking for verification requires significantly more time and higher cost
up front than simulations or other forms of testing (with some exceptions, e.g. [18]) but the
significantly higher level of assurance provided by formal verification outweighs the initial
cost of implementation in the case of systems where human life or safety is at risk. Recent
algorithmic advances have vastly increased the size and complexity of the systems that we
can analyze using formal verification methods. (Examples include partial order reduction
[29], the use of bisimulation equivalences [30], compositional verification [31], bounded
model checking [32], and “lite” formal methods such as static analysis [33].) However,
today’s verification techniques do not scale with the ever-increasing complexity and diver-
sity of modern life critical systems. There is an urgent need to extend research in model
checking and property-based design for the verification of ever more challenging problem

domains.

1.2 Model Checking

Formally, the technique of model checking checks that a system, starting at a start state,
satisfies a specification. Let M be a state-transition graph representing the system with a
set of states S and s € S as the start state. Let ¢ be the specification in temporal logic.
We check that M, s = ¢. In other words, we check that M satisfies (“models”) ¢. This
technique of temporal logic model checking was developed independently by Clarke and

Emerson [1] in 1981 and Quielle and Sifakis [2] in 1982. Thus, 1981 is considered the

www.manaraa.com



Description: Implementation:

1. Create a mathematical model 1. Define the system model M containing traces over the
of the system. set Prop of propositions.

2. Encapsulate desired properties 2. Let specification ¢ be a formula over the set Prop.
in a formal specification.

3. Check that the model satisfies 3. Check that M E ¢:

the specification.
o Translate the specification —¢ into a Biichi au-

tomaton A-, and compose it with the system
model M to form Ay .

e Check Ay -, for nonemptiness. That is, search
for a trace that is accepted by Ay .

— If such a trace exists, return it as a coun-
terexample.

— If no such trace exists, return TRUE.

Table 1.1 : Definition of Model Checking.

birth year of model checking.

In the automata-theoretic approach to model checking [34], we first complement the
specification, ¢. Then —¢ is translated into an automaton, A, that accepts exactly all
computations that satisfy the formula —¢. A_, is then composed with the model M under
verification, forming Ay, -, [35]. Intuitively, any accepting path in Ay, -, represents a case
where the system M allows a behavior that violates the specification ¢. The model checker
then searches for such a trace of the model that is accepted by the automaton Ay, -, via a
nonemptiness check. If an accepting trace is found, it is returned as a counterexample. If
no such trace exists (i.e. the language £ (Ay, -,) = 0), we have proved that M, s | ¢. This
process is summarized in Table 1.1.

There are two types of model checkers; both use the automata-theoretic approach but in

www.manaraa.com



different ways. Explicit-state model checkers translate specifications to automata explicitly
and then use an explicit graph-search algorithm [36]. Symbolic model checkers construct
symbolic encodings of these automata and then use a symbolic nonemptiness test [37].
The symbolic construction of the automaton is easier than explicit construction, but the

nonemptiness test is computationally demanding.

1.3 Linear Temporal Logic

The focus of this dissertation is on satisfiability checking and model checking using Linear
Temporal Logic (LTL) specifications. LTL was first introduced as a vehicle for reasoning
about concurrent programs by Pnueli in 1977 [38]. LTL intuitively describes the values
of Boolean system variables over linear timelines. The set of LTL operators combines the
standard Boolean connectives {—, A, V, —}, with temporal connectives describing when
some event p happens next time (Xp), always (Op), eventually (O p), until another event g
(pUq), or such that p releases q (pRq). LTL is formally defined in Chapter 2.2.1. Example
LTL properties appear in Figure 1.2.

LTL model checkers follow the automata-theoretic approach; the complemented LTL
specification —¢ is translated to a Biichi automaton' A_,, which is a finite automaton on
infinite words that accepts exactly all computations that satisfy the formula —¢.

LTL model checking requires time exponential in the size of the LTL formula. Specif-
ically, let |[M| indicate the size of the system model in terms of state space and |¢| indicate
the size of the specification calculated as the total number of symbols: propositions, logical
connectives, and temporal operators. Then the model-checking algorithm for LTL runs in
time |M| - 290V [39]. The computational complexity of translating the specification —¢

into the Biichi automaton A, is solely responsible for the exponential model checking

| Biichi;automatasare.formally defined in Chapter 2.4.

www.manaraa.com



o Liveness: “Every request is followed by a grant”
O(request — Ogrant)

o [nvariance: “At some point, p will hold forever”
&Op

e “poscillates every time step”
O((p A X=p) V (=p A Xp))

e Safety: “p never happens”
O-p

e Fairness: “p happens infinitely often”
(@Op) — ¢

o Mutual exclusion: “Two processes cannot enter their critical sections at the same time”
O-(in_.CS1 Ain_CS»)

o Partial correctness: “If p is true initially, then q will be true when the task is completed”
p — O(done — q)

Figure 1.2 : Examples of LTL properties.

computational complexity for an LTL formula ¢. The logic-to-automaton translation step
is clearly a bottleneck in the model-checking algorithm; the problem of checking a Biichi
automaton Ay, -, for nonemptiness is NLOGSPACE-complete [40] and decidable in linear
time [41]. The model-checking problem for LTL has been proved to be PSPACE-complete
[42]. The best algorithms for LTL model checking, which are exponential in the length of
the formula but linear in the size of the model, were proposed by Lichtenstein and Pnueli
[39] and Vardi and Wolper [34], the latter algorithm being the basis for most LTL model-
checking tools today. Thus, developing efficient LTL-to-automaton translation algorithms

is essential for formal verification of modern safety-critical systems.

www.manaraa.com



10
1.4 Satisfiability Checking for Property Assurance

Inherent to the use of model checking in verification is the writing of formal specifications.
Formal behavioral specifications written early in the system-design process and communi-
cated across all design phases have been shown to increase the efficiency, consistency, and
quality of the system under development [6, 7]. In property-based design the process of
enumerating the requirements of the system under design is followed by the formalization
of those properties into a precise mathematical logic, such as LTL. Property-based design
and other design-for-verification techniques capture design intent precisely, and use formal
logic properties both to guide the design process and to integrate verification into the design
process [5]. Since there are likely to be errors in the initial properties, the shift to speci-
fying desired system behavior in terms of formal logic properties gives us an opportunity
to identify and address these errors in this very initial phase of system design via property
assurance 7, 43].

The need for checking for errors in formal LTL properties expressing desired system
behaviors first arose in the context of model checking. Accordingly, vacuity checking aims
at reducing the likelihood that a property that is satisfied by the model under verification
is an erroneous property [44, 45]. Property assurance is more challenging at the initial
phases of property-based design, before a model of the implementation has been specified.
Inherent vacuity checking 1is a set of sanity checks that can be applied to a set of temporal
properties, even before a model of the system has been developed, but many possible errors
cannot be detected by inherent vacuity checking [46].

A stronger sanity check for a set of temporal properties is LTL realizability checking,
in which we test whether there is an open system that satisfies all the properties in the
set [47], but such a test is very expensive computationally. In LTL satisfiability checking,

we _test whether there is a closed system that satisfies all the properties in the set. We

www.manaraa.com



11

consider a system open if the system variables can change via external interactions with
the environment in which the system is running, whereas a closed system is one in which
the environment cannot modify any values of system variables after the initial inputs are
provided to the system [48, 49]. The satisfiability test is thus weaker than the realizability
test, but its complexity is lower; it has the same complexity as LTL model checking [42],
and, as we will show, can be implemented via LTL model checking.

The need for LTL satisfiability checking is widely recognized [50, 51, 52, 53, 54]. Fore-
most, it serves to ensure that the behavioral description of a system is internally consistent
and neither over- or under-constrained. If an LTL property is either valid, or unsatisfi-
able this must be due to an error. Consider, for example, the specification always(b; —
eventually b,), where b, and b, are propositional formulas. If b, is always true, then this
property is valid. If b, is satisfiable but b, is a contradiction, then this property is unsatis-
fiable. Furthermore, the collective set of properties describing a system must be satisfiable
together, to avoid contradictions between different requirements. Satisfiability checking is
particularly important when the set of properties describing the design intent continues to
evolve, as properties are added and refined, and have to be checked repeatedly. Because
of the need to consider large sets of properties, it is critical that the satisfiability test be
scalable, and able to handle complex temporal properties. This is challenging, as LTL
satisfiability, like LTL model checking, is PSPACE-complete [42].

Note that satisfiability checking can be performed via model checking: a universal
model (that is, a model that allows all possible traces) does not satisfy a linear temporal
property —f precisely when f is satisfiable. In this thesis, we explore the effectiveness of
model checkers as LTL satisfiability checkers. We compare the performance of explicit-

state and symbolic model checkers.

www.manaraa.com



12
1.5 Explicit versus Symbolic Model Checking

LTL model checkers can be classified as explicit or symbolic. Both types of model checkers
create an automaton Ay, -, such that Z(Ay, ,) = L (M) N L(A-,); M satisfies ¢ iff
Z(Aum, ) = 0. Otherwise, a word accepted by -Z'(Ay, ) is returned as a counterexample
demonstrating an incorrect computation [35]. The difference between explicit and symbolic
model checkers lies in their internal representations of these automata and, subsequently,
the algorithms they use to perform the nonemptiness check.

Explicit model checkers, such as Spin® [55], construct the state space of the model
explicitly. Explicit model checkers search for a trace falsifying the specification via explicit
state search, checking one state at a time. The automaton Ay, -, is not empty if there
is a path in the state-transition graph starting in an initial state, reaching some accepting
state, and cycling back through that accepting state. The standard algorithm for finding
strongly connected components in a state-transition graph is Tarjan’s depth-first search
algorithm, which runs in time linear in the sum of the number of states and transitions. In
practice explicit model checkers usually implement slightly more efficient algorithms to
check for nonemptiness by mapping the maximal strongly connected components in the
state-transition graph and then checking if any of them contain an accepting state [56, 57,
58]. However, representing and searching the state space explicitly requires a considerable
amount of space, even when utilizing optimization techniques such as on-the-fly state space
construction [59, 60, 61]. Given that the size of the state space required for model checking
is the largest challenge to its efficacy as a verification technique, utilizing techniques that
conserve space is vital.

The state-explosion problem is widely agreed to be the most formidable challenge fac-

ing the application of model checking to large and complex real-world systems [20, 8, 62,

*http://spinroot.com/

www.manaraa.com



13

28]. In short, the number of states required to model concurrent systems grows exponen-
tially with the number of system components, constituting the main practical limitation of
model checking. Sequential hardware circuits with » input variables and k registers require
2"k states to represent all possible system configurations [28]. Even simple systems, like
an n-bit binary counter, can necessitate large state spaces (in this case, 2" states). In gen-
eral, a system with n variables over a domain of k possible values requires at least k" states
in the model. Unfortunately, the state-explosion problem is unavoidable in the worst case.
However, a host of techniques have been developed over the last three decades that have
successfully eased the problem for certain types of systems. For example, sophisticated
data structures, clever algorithms for representing interleaving of concurrent components
(called partial order reduction [29]), and the use of bisimulation equivalences [30] and
compositional (also called modular) verification [31] to reason about different levels of
abstraction, all address the state-explosion problem.

In order to mitigate the state-explosion problem, symbolic model checkers, such as
CadenceSMV [9], NuSMV [15], and VIS [63], represent the system model symbolically
using sets of states and sets of transitions. They then analyze the state space symboli-
cally using binary decision diagrams (BDDs) [64]. In contrast with explicit-state model
checking, states in symbolic model checking, are represented implicitly, as a solution to
a logical equation. This saves space in memory since syntactically small equations can
represent comparatively large sets of states. All symbolic model checkers use the symbolic
translation for LTL specifications described in [65] and the analysis algorithm of [66]. The
technique of using BDDs in symbolic model checking to reason about Boolean formulas
representing the state space, thereby avoiding building the state graph explicitly, was in-

vented by McMillan [8] and is considered to be one of the biggest breakthroughs in the

www.manaraa.com



14

history of model checking for its impact on the state-explosion problem [67].3

1.6 Results
1.6.1 Challenges

There exists a need for algorithms to translate LTL specifications into explicit and symbolic
automata in order to enable more efficient specification debugging and model checking to
allow scaling to accommodate the size and complexity of modern verification problems.

To achieve this goal we must:

1. Provide an easy-to-use method for sanity checking LTL specifications before model
checking in order to increase the likelihood that a mismatch between the specifica-
tions and the system model under verification is due to an error in the system model

and not an error in the specifications.

2. Develop an understanding of the limitations affecting the efficiency, scalability, and
correctness of the current generation of both explicit and symbolic algorithms for

LTL-to-automaton translation.

3. Establish a set of representative benchmarks that will be employed to show empiri-
cally the efficiency, scalability, and correctness of algorithms for LTL-to-automaton
translation, both for LTL satisfiability checking and more general forms of model

checking.

4. Understand the complex relationship between the characteristics of an automaton
encoding an LTL formula and the performance of the algorithms used to analyze

those automata for verification.

30thers independently published ideas similar to McMillan’s symbolic model-checking algorithm at
around,the,same timexSee,[68] for a high level overview of these techniques.

www.manaraa.com



15

5. Find new ways to encode LTL formulas as both explicit and symbolic automata in

order to improve the performance of analysis by model-checker back-ends.

6. Conclusively illustrate the performance of the developed methods and any significant

improvements over the state of the art utilizing the established benchmarks.

7. Propose methods for improving the performance of LTL satisfiability and model

checking, taking advantage of modern parallel architectures.

Our contributions address these challenges by describing advances in the domains listed

below.

1.6.2 Contributions

The contributions of this dissertation are as follows:

e [For Challenge 1] A new default procedure for debugging LTL specifications: LTL
satisfiability checking as a front-end to the model-checking process. We show that
LTL satisfiability checking is a special case of LTL model checking and advocate
the adaptation of this sanity check as a first step for any verification task employing
LTL specifications, whether it is debugging specifications for property-based design

or checking that a logical system follows a set of specifications via model checking.

e [For Challenges 2-3] A varied set of challenging benchmarks that enable objective

comparison of LTL translation algorithms, in two parts:

— A set of benchmarks that we show can provide a basis for fair evaluation of the
time-efficiency, correctness, and scalability of algorithms for translating LTL

formulas into automata in the context of LTL satisfiability checking. These

www.manaraa.com



16

benchmarks have recently become the de facto standard for evaluating LTL-to-

automaton algorithms in the field.

— A set of benchmarks for LTL model checking of safety properties that serve to
objectively evaluate the performance of automata representing LTL specifica-

tions in the context of verification via model checking.

e [For Challenges 2,4] A comprehensive analysis of all tools that were publicly avail-
able when we conducted our study [52] for explicit and symbolic LTL-to-automaton
translation in the context of LTL satisfiability checking. We objectively evaluate
these algorithms in terms of time-efficiency, correctness, and scalability, whereas
previous studies all focused on automaton size. We disprove the popular theory that
the performance of such automata is correlated with the automata size, either in terms
of number of states, number of transitions, or a combination of both and demonstrate
that the symbolic approach is faster than the explicit approach for LTL satisfiability

checking.

e [For Challenges 4-7] Defining, and proving correct, an extensible set of 29 novel
encodings for LTL formulas as symbolic automata, consisting of combinations of
different formula normal forms, automaton forms, transition forms, and BDD vari-
able orders. We combine these to form a new multi-encoding approach to symbolic
LTL satisfiability checking that can consistently significantly dominate the native
translations of the previous state-of-the-art tools for this task, perform